

Direct Fastening Technology Manual

Contents

Part 1: Trade application guide Steel and Metal, Siding and Decking Petro Chemical Industry, Shipbuilding 1.16–1.21 Mechanical and Electrical Building Conctruction 1.30–1.37 Interior Finishing 1.38–1.41 Part 2: DX / GX fasteners Eastener selection guide Contents DX /GX fastener 2.11–2.13 Fastener program 2.15–2.215 Tools and equipment 2.217–2.224 Part 3: Steel and metal screws Screws overview 3.5–3.9 General information / screw designations Screws program 3.11–3.156 Special items / sealing washers Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals Alphabetical list of DX/GX fasteners 5.2 Alphabetical list of steel and metal screws 5.3 1.1–1.41 1.1			
Steel and Metal, Siding and Decking Petro Chemical Industry, Shipbuilding 1.16–1.21 Mechanical and Electrical Building Conctruction Interior Finishing 1.38–1.41 Part 2: DX / GX fasteners Fastener selection guide Contents DX / GX fastener 2.11–2.13 Fastener program 2.15–2.215 Tools and equipment 2.217–2.224 Part 3: Steel and metal screws Screws overview 3.5–3.9 General information / screw designations Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals Alphabetical list of DX/GX fasteners 5.2	Part 1:		
Petro Chemical Industry, Shipbuilding Mechanical and Electrical Building Conctruction Interior Finishing Int	Trade application guide		1.1–1.41
Mechanical and Electrical Building Conctruction Interior Finishing Int	Steel and Metal, Siding and Decking	1.4–1.15	
Building Conctruction Interior Finishing Interior In	Petro Chemical Industry, Shipbuilding	1.16-1.21	
Interior Finishing Part 2: DX / GX fasteners Fastener selection guide Contents DX /GX fastener Fastener program Contents DX /GX fastener Fastener program 2.15-2.215 Tools and equipment 2.217-2.224 Part 3: Steel and metal screws Screws overview 3.5-3.9 General information / screw designations Screws program 3.11-3.156 Special items / sealing washers 3.157-3.158 Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75-4.78 Approvals Alphabetical list of DX/GX fasteners 5.2	Mechanical and Electrical	1.22-1.29	
Part 2: DX / GX fasteners Fastener selection guide Contents DX /GX fastener Contents DX /GX fastener 2.11-2.13 Fastener program 2.15-2.215 Tools and equipment 2.217-2.224 Part 3: Steel and metal screws 3.1-3.165 Screws overview 3.5-3.9 General information / screw designations 3.10 Screws program 3.11-3.156 Special items / sealing washers 3.157-3.158 Screwdrivers / accessories / bits 3.159-3.163 Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75-4.78 Approvals Alphabetical list of DX/GX fasteners 5.2	Building Conctruction	1.30-1.37	
Fastener selection guide Contents DX / GX fastener Contents DX / GX fa	Interior Finishing	1.38–1.41	
Fastener selection guide Contents DX / GX fastener Contents DX / GX fa	- 10		
Fastener selection guide Contents DX /GX fastener Contents DX /GX fastener Eastener program Contents DX /GX fastener Eastener program Contents DX /GX fastener Contents DX /GX fasteners Contents DX /GX fastener Content			
Contents DX /GX fastener Fastener program 2.15-2.215 Tools and equipment 2.217-2.224 Part 3: Steel and metal screws 3.1-3.165 Screws overview 3.5-3.9 General information / screw designations Screws program 3.11-3.156 Special items / sealing washers 3.157-3.158 Screwdrivers / accessories / bits 3.159-3.163 Tools and systems for steel and metal trade 3.164-3.166 Part 4: Direct fastening principles and technique 4.1-4.81 Tips for users 4.75-4.78 Approvals 4.79-4.81 Part 5: Product index 5.1-5.3 Alphabetical list of DX/GX fasteners 5.2	DX / GX fasteners		2.1–2.234
Fastener program 2.15-2.215 Tools and equipment 2.217-2.224 Part 3: Steel and metal screws 3.1-3.165 Screws overview 3.5-3.9 General information / screw designations 3.10 Screws program 3.11-3.156 Special items / sealing washers 3.157-3.158 Screwdrivers / accessories / bits 3.159-3.163 Tools and systems for steel and metal trade 3.164-3.166 Part 4: Direct fastening principles and technique 4.1-4.81 Tips for users 4.75-4.78 Approvals 4.79-4.81 Part 5: Product index 5.1-5.3	Fastener selection guide	2.5–2.10	
Tools and equipment Part 3: Steel and metal screws 3.1–3.165 Screws overview General information / screw designations 3.10 Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits 3.159–3.163 Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users 4.75–4.78 Approvals Approvals Alphabetical list of DX/GX fasteners 5.2	Contents DX /GX fastener	2.11–2.13	
Part 3: Steel and metal screws Screws overview 3.5–3.9 General information / screw designations 3.10 Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits 3.159–3.163 Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index Alphabetical list of DX/GX fasteners 5.2	Fastener program	2.15–2.215	
Steel and metal screws Screws overview 3.5–3.9 General information / screw designations 3.10 Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits 3.159–3.163 Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2	Tools and equipment	2.217-2.224	
Screws overview 3.5–3.9 General information / screw designations 3.10 Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits 3.159–3.163 Tools and systems for steel and metal trade 3.164–3.166 Part 4: Direct fastening principles and technique Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2	Part 3:		
General information / screw designations Screws program 3.11–3.156 Special items / sealing washers Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index Alphabetical list of DX/GX fasteners 5.2	Steel and metal screws		3.1–3.165
Screws program 3.11–3.156 Special items / sealing washers 3.157–3.158 Screwdrivers / accessories / bits 3.159–3.163 Tools and systems for steel and metal trade 3.164–3.166 Part 4: Direct fastening principles and technique Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2	Screws overview	3.5–3.9	
Special items / sealing washers Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index Alphabetical list of DX/GX fasteners 5.2	General information / screw designations	3.10	
Screwdrivers / accessories / bits Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index Alphabetical list of DX/GX fasteners 5.2	Screws program	3.11–3.156	
Tools and systems for steel and metal trade Part 4: Direct fastening principles and technique Tips for users Approvals 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners	Special items / sealing washers	3.157–3.158	
Part 4: Direct fastening principles and technique 4.1–4.81 Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2	Screwdrivers / accessories / bits	3.159–3.163	
Direct fastening principles and technique 4.1–4.81 Tips for users Approvals 4.75–4.78 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners	Tools and systems for steel and metal trade	3.164–3.166	
Direct fastening principles and technique 4.1–4.81 Tips for users Approvals 4.75–4.78 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners	Part 4:		
Tips for users 4.75–4.78 Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2		iaue	4.1–4.81
Approvals 4.79–4.81 Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2		-	
Part 5: Product index 5.1–5.3 Alphabetical list of DX/GX fasteners 5.2			
Product index5.1–5.3Alphabetical list of DX/GX fasteners5.2	Approvais	4.79-4.01	
Alphabetical list of DX/GX fasteners 5.2	Part 5:		
	Product index		5.1-5.3
Alphabetical list of steel and metal screws 5.3	Alphabetical list of DX/GX fasteners	5.2	
	Alphabetical list of steel and metal screws	5.3	

9/2011

Part 1:

Trade application guide

8/2011 1.1

Part 1:		
Trade application guide		1.1–1.41
Steel and Metal, Siding and Decking	1.4–1.15	
Petro Chemical Industry, Shipbuilding	1.16–1.21	
Mechanical and Electrical	1.22-1.29	
Building Conctruction	1.30–1.37	
Interior Finishing	1.38–1.41	

8/2011 1.3

Steel and metal, siding and decking	Green / fresh concrete	Concrete Old / high strength	im, profiles,	Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry	po	DX: Powder actuated system Gas	actuated system Screw fastening system	Fastener / Description				
	Gre	S S	Stee	Stee	Stee	San	Wood	ä	S. F.	Fastener	Designation	Description	Approvals	Page
Roof decking: double skin insulated						_								
X F F F F					•			DX			X-ENP	Standard decking pin for structural steel > = 6 mm	•	2.15
20				•				DX		********	X-EDN 19	Decking pin for 5–10 mm bar joist or steel construction / diaphragm design (USA)	•	2.31
				•				DX		******	X-EDNK 22	Decking pin for 3–6 mm bar joist or steel construction / diaphragm design (USA)	•	2.31
				•				DX		1111111111	X-ENP 2K	Decking pin for 3–6 mm base material	•	2.25
	•	•						DX			NPH 2	Fastening with pre-drilling	•	2.35
			•						SF		S-MD 01 Z	Zinc carbon self-drilling screw for fastening sheet metal / sheet metal		3.39
			•						SF		S-MS 01 Z	Zinc carbon self-drilling screw for fastening sheet metal / sheet metal		3.33
				•					SF		S-MD 03 Z	Zinc carbon self-drilling screw for fastening sheet metal / steel framing		3.49
					•				SF		S-MD 05 Z	Zinc carbon self-drilling screw for fastening sheet metal / steel beams		3.62
			•						SF		S-MD 51 S	Stainless self-drilling screw for fastening sheet metal / sheet metal		3.68
				•					SF		S-MD 53 S	Stainless self-drilling screw for fastening sheet metal / steel framing		3.76

1.4 1.5 8/2011 8/2011

2.31

2.15

2.35

Decking pin for 3–6 mm bar joist or steel

construction / diaphragm design (USA)

Decking pin for 3–6 mm base material

Fastening with pre-drilling

X-EDNK 22

X-ENP 2K

NPH 2

Steel and metal, siding and decking

Roof decking: flat roof insulated

	Base material					Technology			gy	Fastener / Description						
g	Green / fresh concrete	Concrete	Old / high strength concrete	Steel ≤ 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system	SF: Screw fastening system	Fastener	Designation	Description	Approvals	Page
						•			DX				X-ENP	Standard decking pin for structural steel > 6 mm	•	2.15
					•				DX			*******	X-EDN 19	Decking pin for 5–10 mm bar joist or steel construction / diaphragm design (USA)	•	2.31

Roof decking: single skin non insulated

ed							
	•	DX			X-ENP	Standard decking pin for structural steel > 6 mm, with SDK2 ceiling cap	2.15
	•		SF		S-MD 51 S	Stainless self-drilling screw	3.68
	•		SF		S-MD 53 S	Stainless self-drilling screw	3.76
	•		SF		S-MD 55 S	Stainless self-drilling screw	3.85
	•	•	SF	-	S-MP 53 S	Stainless self tapping screw (member thickness > 3 mm)	3.126
	• •		SF		S-MP 54 S	Stainless self tapping screw (depth of engagement > 1.25 mm)	3.130

1.6 8/2011 8/2011 1.7

DX

DX

DX

3.130

for sandwich panel fastening to wood

(depth of engagement > 1.25 mm)

Stainless self tapping screw

S-MP 54 S

Steel and metal, siding and decking

siding and decking	oncrete ste figh strength the HTU) samm, profi Amm, bear st fi me stone,	masonry Wood DX: Powder actuated system GX: Gas GX: Screw SF: fastening system	Fastener Designation	Description	Approvals Pa	ge
Roof decking: sandwich panel						
	•	SF	S-CD 63 S	Stainless steel screw for sandwich panel fastening	3.1	36
	•	SF	S-CD 65 S	Stainless steel screw for sandwich panel fastening	3.1	40
Marie Marie		• SF	S-CDW 61 S	Coated stainless steel screw	3.1	44

Fastener / Description

Technology

SF

Application on the wall: double skin insulated

ı III ı	ulatet	4										
					•	DX			X-ENP	Standard decking pin for structural steel > 6 mm	•	2.15
				•		DX		4444444	X-ENP 2K	Decking pin for 3–6 mm base material	•	2.25
	•	•	•			DX			NPH 2	Fastening with pre-drilling	•	2.35
			•				SF		S-MD 01 Z	Zinc carbon self-drilling screw for fastening sheet metal / sheet metal		3.39
			•				SF		S-MS 01 Z	Zinc carbon self-drilling screw for fastening sheet metal / sheet metal		3.33
				•			SF		S-MD 03 Z	Zinc carbon self-drilling screw for fastening sheet metal / steel framing		3.49
					•		SF		S-MD 05 Z	Zinc carbon self-drilling screw for fastening sheet metal / steel beams		3.62
			•				SF		S-MD 51 S	Stainless self-drilling screw for fastening sheet metal / sheet metal		3.68
				•			SF		S-MD 53 S	Stainless self-drilling screw for fastening sheet metal / steel framing		3.76

1.8 1.9 8/2011 8/2011

Steel and Metal, Siding and Decking

Base	mat	terial						Tech	nolo	gy	
Green / resh concrete	Soncrete	Old / high strength concrete	steel ≤ 3 mm, profiles, inlays HTU)	Steel > 3 mm, oar joist	Steel ≥ 6 mm, beams	Sandlime stone, nasonry	Wood	Powder actuated system	Gas actuated system	Screw fastening system	

Fas	stener	Designation	Description	Approvals	Page
-----	--------	-------------	-------------	-----------	------

Application on the wall: Single skin non insulated

		•		DX			X-ENP	Standard decking pin for structural steel > 6 mm, with SDK2 ceiling cap	2.15
•					SF		S-MD 51 S	Stainless self-drilling screw	3.68
	•				SF		S-MD 53 S	Stainless self-drilling screw	3.76
		•			SF		S-MD 55 S	Stainless self-drilling screw	3.85
•			•		SF	- 40000000 E	S-MP 53 S	Stainless self-tapping screw (member thickness > 3 mm)	3.126
	•	•			SF		S-MP 54 S	Stainless self-tapping screw (depth of engagement > 1.25 mm)	3.130

Fastener / Description

Application on the wall: Sandwich panel

•		SF		S-CD 63 S	Stainless steel screw for sandwich panel fastening	3.136
•		SF		S-CD 65 S	Stainless steel screw for sandwich panel fastening	3.140
	•	SF		S-CDW 61 S	Coated stainless screw for sandwich panel tastening to wood	3.154
• •		SF		S-MP 54 S	Stainless self-tapping screw (depth of engagement > 1.25 mm)	3.130

1.10 8/2011 8/2011 1.11

Steel and Metal, Siding and Decking

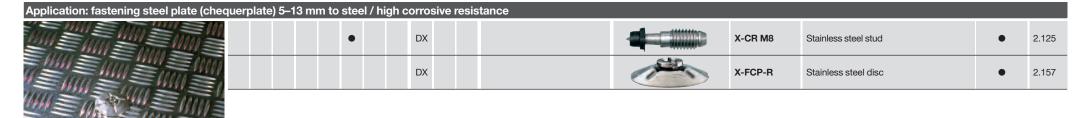
Steel and Metal,	Base material	Technology	Fastener / Description				
Siding and Decking	Green / fresh concrete Concrete Cond / high strength concrete Steel ≤ 3 mm, profiles, inlays HTU) Steel > 3 mm, bar joist Steel ≥ 6 mm, beams Steel ≥ 6 mm, beams Sandlime stone, masonry	DX: Powder actuated system GX: Gas actuated system Screw Screw	Fastener	Designation	Description	Approvals	Page
Composite floor decking: with shear c	connectors						
		DX	1	X-HVB + X-ENP 21 HVB		•	2.39

Application: Tacking of composite deck	(S							
		•	DX		X-ENP	Standard decking pin for structural steel > 6 mm	•	2.15
		•	DX	*******	X-EDN 19	Decking pin for 5–10 mm bar joist or steel construction / diaphragm design (USA)	•	2.31
		•	DX	1111111111	X-EDNK 22	Decking pin for 3–6 mm bar joist or steel construction / diaphragm design (USA)	•	2.31
		•	DX	+++++++++++++++++++++++++++++++++++++++	X-ENP 2K	Decking pin for 3–6 mm base material	•	2.25
		•	DX	operneere	X-U15	Step shank fastener	•	2.47
	•		SF		S-MD 01 Z	Zinc carbon steel self-drilling screw for fastening sheet metal / steel		3.39
	•		SF		S-MS 01 Z	Zinc carbon self-drilling screw for fastening sheet metal / sheet metal		3.33
		•	SF		S-MD 03 Z	Zinc carbon steel self-drilling screw for fastening sheet metal / steel framing		3.49
		•	SF		S-MD 05 Z	Zinc carbon self-drilling screw for fastening sheet metal / steel beams		3.62

1.12 1.13 8/2011 8/2011

Steel Siding

Steel and Metal,	Base material	Technology	Fastener / Description				
Siding and Decking	Green / fresh concrete Concrete Concrete Old / high strength concrete Steel ≤ 3 mm, profiles, inlays HTU) Steel > 3 mm, bar joist Steel ≥ 6 mm, beams Steel ≥ 6 mm, beams Wood	DX: Powder actuated system GA: Gas actuated system Screw Srew Sreining system	Fastener	Designation	Description	Approvals	Page
Application: Fastening metal brackets	, clips, metal tracks, etc. to steel						
	•	DX	Million I	X-U	Pin length: 16–22 mm, 4 mm shank diameter	•	2.47
	•	DX		EDS	Pin length: 22–27 mm, 4.5 mm shank diameter	•	2.79
	•	DX		X-CR	Outdoor applictions, corrosion-resistant fastener required; pin length: 14–22 mm, 3.7 mm shank dia.	•	2.85
	•	DX		X-EM_H	Threaded connection	•	2.113
	•	DX	4	X-BT	Threaded connection, corrosion-resistant fastener required, through penetration of base steel not mermitted		2.119
	•	DX		X-CRM	Threaded connection, corrosion-resistant fastener required		2.125


1.14 1.15 8/2011 8/2011

sl

Petrochemical ndustry,	Base	mater	rial	es,	•	SI	т	T	echn E	ology Leg		Fastener / Descrip	otion				
shipbuilding	Green / fresh concrete			Steel ≤ 3 mm, profilinlays HTU)					<u> </u>	GX: actuated sy Screw		Fastener		Designation	Description	Approvals	Page
Application: metal / fiberglass grating	to ste	el for	r ups	strea	m an	ıd hiç	gh co	ssos	ive	enviro	nment						
					,	•		D	Х			4	in a	X-BT M8	Stainless steel stud for "not for through- penetration"; steel thickness > 8 mm, coat- ed and uncoated steel, high strength steel		2.119
								D	Х			-		X-FCM-R	Stainless steel grating disc	•	2.133
$\times \times $																	

Application: metal / fiberglass grating to steel for	downstream / Industria	l applications and medium corrosive					
	•	DX		X-CR M8	Stainless steel stud	•	2.125
		DX	-0	X-FCM-M	Grating disc, hot dip galvanized	•	2.133
	•	DX	A	X-GR	Non-removable grating fastener		2.141
	•	DX		X-GR-RU	Removable grating fastener		2.147
	• •	SF	<u>Ji</u>	X-MGR	Removable grating fastener		2.153

1.16 1.17 8/2011 8/2011

Petrochemical industry, shipbuilding

Ва	ase m	ateri	al						Tech	nolo	ЭУ		Fastener / Description				
Green /	rresh concrete	Old / high strength	oncrete teel < 3 mm. p	inlays HTU) Steel > 3 mm,	Dist	Steel ≥ b mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	s :uated	SF: Screw fastening system		Fastener	Designation	Description	Approvals	Page
200110	rolo	ta\ 5	12	mm i	0.01	امما	1 / m	adiu	m 00	rroc	ivo r	ocietanos					

Application: fastening steel plate (chequerplate) 5–13 mm to steel / medium corrosive resistance

•	DX		X-CR M8	Stainless steel stud	•	2.125
	DX	OCT OF	X-FCP-M	Disc hot dip galvanized	•	2.157

Application: mechanical and electrical for petro chemical industry, shipbuilding, etc.

• DX	X-BT M10 X-BT W10 Stainless steel stud for "not for through-penetration"; steel thickness >= 8 mm, coated and uncoated steel, high strength steel

Application: grounding and bonding

• DX	X-BT M10 X-BT W10	Stainless steel stud for "not for through-pe- netration"; steel thickness > = 8 mm, coat- ed and uncoated steel, high strength steel	•	2.119

1.18 8/2011 8/2011 **1.19**

S

Petrochemical industry, shipbuilding	Green / fresh concrete	icrete	/ high strength crete	inlays HTU) Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system	Screw fastening system	Fastener / Description	Designation	Description	Approvals	Page
Application: tagging															
TO SECULIAR STATES				•	•			DX			recent the same of	X-U15	Step shank fastener	•	2.47

1.20 1.21 8/2011 8/2011

Mechanical and	Bas	se ma	iterial						hnolo	ogy	Fastener / Description				
electrical	Green / fresh concrete	Concrete	Old / high strength concrete	Steel < 3 mm, profiles, inlays HTU)	Steel > 3 IIIIII, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry Wood	DX: Powder actuated system	GX: Gas actuated system	Screw fastening system	Fastener	Designation	Description	Approvals	Page
Application: plastic / flexible pipes and	d met	tal pi	ipes												
	•	•	•		•	•		DX	GX			X-FB	Single conduit fastener collated for 16–50 mm diameter		2.201
	•	•	•		•	•		DX	GX			X-FB	Single conduit fastener premounted for 16–50 mm diameter		2.201
	•	•	•		•	•		DX	GX		Pop	X-DFB	Double conduit fastener collated for 16–50 mm diameter		2.201
	•	•	•		•	•		DX	GX			X-DFB	Double conduit fastener premounted for 16–50 mm diameter		2.201
	•	•	•		•	•	•	DX	GX			X-EKS	Conduit clips for 16–25 mm diameter		2.207
	•	•	•		•	•	•	DX	GX			X-EKSC	Conduit clips for 16–25 mm diameter		2.207
	•	•	•		•	•	•	DX	GX		F.S.	X-ECT	To use with cable tie		2.207
Application: metal pipes															
	•	•						DX				X-M6 X-M8 M10	Metric threaded studs for use with pipe ring		2.107
	•	•						DX				X-W6 X-W8 W10	Whitworth threaded studs for use with pipe ring	•	2.107
					•	•		DX				X-EM6 X-EM8 X-EM10 H	Metric threaded studs for use with pipe ring	•	2.113
					•	•		DX				X-EW6 X-EW8 X-EW10 H	Whitworth threaded studs for use with pipe ring	•	2.113

1.22 1.23 8/2011 8/2011

Mechanical and electrical	Green / gas fresh concrete	Concrete Concrete	_	Steel < 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: das actuated system	Screw SF: fastening system	Faste	ener / Description	Designation	Description	Approvals	Page
Application: electrical cables																	
(8)	•	•			•	•	•		DX	ЭX			1	Х-ЕКВ	Electrical cable tie, collated version		2.193
	•	•			•	•	•		DX	ЭX				Х-ЕКВ	Electrical cable tie, premounted version		2.193
	•	•			•	•	•		DX	ЭX				X-ECH	Electrical cable tie, premounted version for up to 35 cables each 10 mm diameter		2.193
TT	•	•			•	•	•		DX	ЭX		1		X-ECH	Electrical cable tie, premounted version		2.193
Application: trunking																	
Control of the contro	•	•			•	•	•		DX	ЭX				X-ET	Fasteners for electrical cable trays and junction boxes, collated version		2.213
		•					•		DX				—	X-ET UK	Fasteners for electrical cable trays and junction boxes, premounted version		2.213
7 1 1																	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	

Application: junction boxes

•	•	•	DX	GX		X-ET	Fasteners for electrical cable trays and junction boxes, collated version	2.213

1.24 1.25 8/2011 8/2011

Mechanical and

wechanical and	Bas	e ma	aterial						nology		Fastener / Description				
electrical	Green / fresh concrete	Concrete	Old / high strength concrete	Steel < 3 mm, profiles, inlays HTU)	barjoist	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system Screw SF: factoring system	Tastering system	Fastener	Designation	Description	Approvals	Page
Application: cable trays															
	•	•	•		•	•		DX				X-HS	Threaded hanger		2.175
	•	•						DX	GX			X-HS MX	Threaded hanger for light electrical applications		2.181
	•	•			•			DX	GX		T	X-HS-W	Threaded hanger for light electrical applications		2.187
	2							DX				X-EM6 X-EM8 X-EM10 H	Threaded studs, metric	•	2.113
	•	•	•					DX				X-M6 X-M8 M10	Threaded studs, metric		2.107
A P 42 P 4						_			_						
Application: lightening	•	•	•		•			DX			T	X-CC	Loop hanger		2.175
	•	•	•		•			DX				X-CC MX	Loop hanger for light electrical applications		2.181
1	•	•			•			DX	GX		T	X-HS-W	Threaded hanger for light electrical applications		2.187

Application: sprinkler

•	•		DX			W10	Whitworth threaded studs	•	2.107

1.27 1.26 8/2011 8/2011

Mechanical and electrical	Green / fresh concrete	Concrete Concrete	/ high strength	Steel ≤ 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	3 mm,	Sandlime stone, masonry	Wood	DX: Powder actuated system	Gas: Gas actuated system	SF: Screw fastening system	Fast	ener / Description	Designation	Description	Approvals	Page
Application: air ducts																	
					•	•			DX			-		X-EM8 X-EM10	Threaded studs, metric	•	2.113
		•	•						DX			4		X-M8 M10	Threaded studs, metric		2.107
		•	•						DX			4		X-W8 W10	Whitworth threaded studs	•	2.107
		•	•						DX				*	X-HS M6, M8 X-HS W6, W8	Threaded hanger		2.175

1.28 1.29 8/2011 8/2011

2.57

Building

Bullaing	Base	mate	rial				Tech	nology	Fastener / Description				
construction	Green / fresh concrete	-	Old / nign strengtn concrete Steel ≤ 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system Screw Fastening system	Fastener	Designation	Description	Approvals	Page
Application: formwork positioning													
		•	•	•	•		DX		reference to	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
	•	•					DX		TERREFERE	X-C	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
	•						DX			х-ст	Temporary, removable, pin length 47–72 mm, 3.7 mm shank diameter		2.97
							DX		7,0,0	X-FS	Form stop to use with X-U, X-DNI, X-ZF		2.171
Application: safety barriers / generic w	vood 1	aste	nings										
		•	•	•	•		DX		entercent.	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47

DX

Application: hardwood flooring

	•	•	•	•	DX	X-U Pin length 22–72 mm, 4 mm shank diameter	•	2.47
•	•				DX	X-C Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57

X-C

Pin length 22–72 mm, 3.7 mm shank diameter

1.30 1.31 8/2011 8/2011

Building construction

Base m	aterial						Tech	nolo	gy	
Green / fresh concrete Concrete	Old / high strength concrete	Steel ≤ 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	Steel ≥6 mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system	Screw fastening system	

Fastener	Designation	Description	Approvals	Page

Application: wall-tie (Facade wall)

	•	•	•	•	DX	eccecco.	X-U	Pin length 16–72 mm, 4 mm shank diameter	•	2.47
•	•				DX		х-с	Pin length 14–72 mm, 3.7 mm shank diameter	•	2.57
	•				DX		X-CR	Stainless steel, pin length 14–54 mm, 3.7 mm shank diameter	•	2.86

Fastener / Description

Application: wire mesh

	•	•	•	•	DX	(tricht)	X-U	Pin length 16–72 mm, 4 mm shank diameter	•	2.47
•	•				DX	***********	x-c	Pin length 14–72 mm, 3.7 mm shank diameter	•	2.57

Application: window and door frames

5								
	•	•	•	•	DX	X-U Pin length 16–72 mm, 4 mm shank diameter	•	2.47
•	•				DX	X-C Pin length 14–72 mm, 3.7 mm shank diameter	•	2.57

1.32 1.33 8/2011 8/2011

Building construction

Application: termal insulation

Ba	se ma	iterial						Tech	nolo	gy	Fastener / Description				
Green / fresh concrete	Concrete	Old / high strength concrete	Steel < 3 mm, profiles, inlays HTU)	Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	Sandlime stone, masonry	Wood	DX: Powder actuated system	GX: Gas actuated system	ening	Fastener	Designation	Description	Approvals	Page
	•							DX				X-IE	Wall insulation for 25–120 mm thickness		2.163

Application: water drainage membrane

е							
•	• •	DX	CONTRACTOR OF THE PARTY OF THE	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
• •		DX	*********	х-с	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
		DX		x-sw	Soft washer fastener		2.167

Application: water sealing / swelling strip

suip								
	•	• •	•	DX	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
•	•			DX	 x-c	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57

1.34 8/2011 8/2011 1.35

Building	Base	e mate	rial				Tech	nology	Fastener / Description				
construction	Green / fresh concrete	crete	Old / high strength concrete Steel < 3 mm, profiles,	Iniays HTU) Steel > 3 mm, bar joist	Steel ≥ 6 mm, beams	masonry	DX: Powder actuated system	GX: Gas actuated system Screw Screw	Fastener	Designation	Description	Approvals	Page
Application: water sealing / injection l	nose												
		•	•	•	•		DX		REFERENCE TO	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
	•	•					DX		FERREFERE	X-C	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
							DX			X-FB MX	For fixing pipes, to use with X-U, X-DNI, X-ZF		2.201

1.36 1.37 8/2011 8/2011

Interior finishing	Base material		Technology	Fastener / Description				
	Green / fresh concrete Concrete Old / high strength concrete Steel ≤ 3 mm, profiles, inlays HTU) Steel > 3 mm,	bar joist Steel ≥ 6 mm, beams Sandlime stone, masonry Wood	DX: Powder DX: actuated system GX: act actuated system Screw Screw St. fastening system	Fastener	Designation	Description	Approvals	Page
Application: metal track (hat track)								
	• •	•	DX	cocorcere	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
	• •	•	DX		х-с	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
	•	•	GX	000000000	X-GHP	Pin length 18–24 mm	•	2.67
		•	GX		X-EGN	Pin length 14 mm	•	2.67
	•	•	GX		X-GN	Pin length 20–39 mm	•	2.67
Application: wood track								
	• •	•	DX	(Contract	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
	• •		DX	700000000	x-c	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
	•	•	GX		X-GN	Pin length 20–39 mm	•	2.67

1.38 1.39 8/2011 8/2011

Interior finishing	Base material			Technology		Fastener / Description				
	Green / fresh concrete	Concrete Old / high strength concrete Steel = 3 mm, profiles, inlays HTU) Steel > 3 mm, bar loist	Steel ≥ 6 mm, beams Sandlime stone, masonry Wood	Dx. Powder actuated system Gas actuated system Screw Screw Fastening system		Fastener	Designation	Description	Approvals	Page
Application: suspended ceilings and co	eiling	grid								
		• • •	•	DX		(Killing)	X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
	•	•		DX		**************************************	х-с	Pin length 22–72 mm, 3.7 mm shank diameter	•	2.57
		•	•	DX		H	x-cc	Ceiling clip for suspention with wire	•	2.175
		•	•	DX			X-HS	Ceilling hanger with suspention for threaded rods	•	2.175
		• •					DNH DKH	DX Kwik, single fastening with pre-drilling	•	2.101
Application: perimeter wall / exterior w	all									

•	•	•	•	DX	ere 		X-U	Pin length 22–72 mm, 4 mm shank diameter	•	2.47
		•	•	DX	•		EDS	Pin length 19–27 mm, 4.5 mm shank diameter	•	2.79
		•	•	DX	444	111111	X-ENP	Pin diameter 4.5 mm	•	2.15

1.40 1.41 8/2011 8/2011

1.42

Part 2:

DX / GX fasteners

8/2011 2.1

DX / GX fasteners		2.1-2.234
Fastener selection guide	2.5–2.10	
Contents DX / GX fastener	2.11–2.13	
Fastener program	2.15–2.216	
Tools and equipment	2.217-2.234	

8/2011 2.3

2.4

Fastener selection guide

Selecting the right fastener

There are five fastener selection charts corresponding to five trade groups:

- Steel metal (e.g. siding and decking, cladding, grating)
- Petrochemical and industrial (e.g. installations, off-shore)
- Interior finishing (e.g. drywall, suspended ceilings)
- General construction (e.g. concrete forming, insulation)
- HVAC, plumbing and electrical

To find a DX- or GX fastener for an application, enter the appropriate trade group chart with the application:

Detailed technical information for the selected fastener family is found on its product information sheet.

For some applications, two or more fastener families are listed as suitable. The final selection is influenced by technical data found on the product sheets.

Regional differences in building methods, materials, trade preferences, available tools, etc. also influence fastener selection. Therefore, designers and specifiers are advised to consult the current Hilti catalogue and make use of the local Hilti technical advisory service.

Corrosion

Corrosion has a major influence on the suitability of a fastener and therefore also on fastener selection. In order to provide a basis for judging the suitability of fasteners, it is useful to categorise applications in three classes:

- Safety relevant, permanent applications: (e.g. profiled metal sheet fastenings in roofs and walls)
- Non-safety relevant, permanent fastenings (e.g. metal track fastenings for drywall)
- Non-safety relevant, temporary fastenings (e.g. fastenings of wooden sills, kickers, etc. in concrete forming).

For **non-safety-relevant applications**, zinc-plated fasteners made of normal carbon steel can be used without restriction.

8/2011 2.5

For safety-relevant, permanent fastenings the restrictions described below apply:

- In any case there is a restriction to the use of galvanized carbon steel fasteners if they are exposed to weather or if they are inside and subject to repeated wetting as from condensation. The galvanization (typically in a range from 5 to 20 microns of Zn) provides corrosion protection during transport and construction, during which exposure to weather can never be completely prevented. If the fastenings are exposed to repeated wetting or weather during their service life, the use of galvanised carbon steel fasteners is prohibited and stainless steel fasteners must be used. This safety measure must be observed without exception because the corrosion of galvanized steel fasteners leads not just to material loss but also to hydrogen embrittlement. Hydrogen embrittlement can easily result in fracture of the fastener at very low load.
- Referring to the above-mentioned example of profiled metal sheet fastening for roofs and walls, the use of galvanized steel fasteners is allowable only where wetting of the fastener is not to be expected. This applies in general to inside skins of two skin, insulated roofs and walls enclosing dry and closed rooms. This is the classic application area for X-ENP19 galvanized fasteners.

Contact corrosion is taken into consideration by observing common rules concerning acceptable material combinations. Parts made of less noble metals are subject to increased corrosion if they are in electrochemical contact with a larger part made of a more noble metal, provided of course that an electrolyte is present. Fasteners that are used in wet areas must be at least as noble or better, nobler than the fastened part. The effect of contact corrosion is shown in the table below. This information is especially applicable to stainless steel X-CR fasteners because only the X-CR is suitable for safety-relevant, permanent application in outdoor areas or areas otherwise exposed to corrosion.

Fastened part	Powder- and gas-ac Zinc-plated carbon sto	tuated fastener: eel X-CR stainless steel
Construction steel (uncoated)	0	0
Galvanized steel sheet	0	0
Aluminum alloy	•	0
Stainless steel sheet	•	0
	O Negligible or no cor	

Heavy corrosion of fastener

The accelerated corrosion of a fastener due to contact corrosion can take place only in the presence of an electrolyte (moisture from precipitation or condensation). Without this electrolyte - e.g. in dry inside rooms - zinc-plated fasteners can be used in connection with more noble metals.

2.6 8/2011

Design concepts

The recommended working loads (N_{rec} and V_{rec}) are suitable for use in typical working load designs. If a partial safety factor design method is to be used, the N_{rec} and V_{rec} values are conservative when used as N_{Rd} and V_{Rd} . Exact values for N_{Rd} and V_{Rd} can be determined by using the safety factors where given and/or by reviewing test data. Design loads (characteristic strength, design resistance and working loads) for the **X-HVB** shear connector are listed and ordered as per design guideline.

Worldwide the designer may encounter two main fastening design concepts:

Working load concept

$$N_S \le N_{rec} = \frac{N_{Rk}}{\gamma_{GLOB}}$$

where γ_{GLOB} is an overall factor of safety including allowance for:

- · errors in estimation of load
- deviations in material and workmanship

and N_S is, in general a characteristic acting load.

Partial factors of safety

$$N_{Sk} \times \gamma_F = N_{Sd} \le \frac{N_{Rk}}{\gamma_M} = N_{Rd}$$

where:

 γ_F is a partial factor of safety to allow for errors in estimation on the acting load.

 γ_M is a partial factor of safety to allow for deviations in material and workmanship.

Structural analysis of the fastened part (e.g. roof deck panel or pipe hung from a number of fastenings) leads to calculation of the load acting on a single fastening, which is then compared to the recommended load (or design value of the resistance) for the fastener. In spite of this single point design concept, it is necessary to ensure that there is sufficient redundancy that the failure of a single fastening will not lead to collapse of the entire system. The old saying "one bolt is no bolt" applies also to DX and GX fastening.

8/2011 2.7

Nomenclature / symbols

Following is a table of symbols and nomenclature used in the technical data.

Fastener test data	a and performance					
N and V	Tensile and shear forces in a general sense					
F	Combined force (resulting from N and V) in a general sense					
N _s and V _s	Tensile and shear forces acting on a fastening in a design calculation					
F _s	Combined force (resulting from N_s and V_s) in a design calculation					
N _u and V _u	Ultimate tensile and shear forces that cause failure of the fastening; sta-					
	tistically, the reading for one specimen					
N _{u,m} and V _{u,m}	Average ultimate tensile and shear forces that cause failure of the fas-					
	ening, statistically, the average for a sample of several specimens					
S	The standard deviation of the sample					
N _{test,k} and V _{test,k}	Characteristic tensile and shear resistance of test data, statistically, the					
	5 % fractile.					
N _{Rk} and V _{Rk}	Characteristic tensile and shear resistance of the fastening used for fas-					
	tening design; statistically, the 5 $\%$ fractile. For example the character-					
	istic strength of a fastening whose ultimate strength can be described					
	by a standard Gauss type distribution is calculated by:					
	$R_k = N_{u,m} - k \times S$ where k is a function of the sample size, n and the					
	desired confidence interval.					
N_{Rd} and V_{Rd}	Tensile and shear design force on the fastener shank					
	$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$ and $V_{Rd} = \frac{V_{Rk}}{\gamma_M}$ where γ_M is an partia Isafety factor for the resistance of the fastening					
N _{rec} and V _{rec}	Recommended tensile and shear force on the fastener shank					
	$\textbf{N}_{rec} = \frac{\textbf{N}_{Rk}}{\gamma_{GLOB}} \text{ and } \textbf{V}_{rec} = \frac{\textbf{V}_{Rk}}{\gamma_{GLOB}} \text{ where } \gamma_{GLOB} \text{ is an overall factor of safety}$					
M _{rec}	Recommended working moment on the fastener shank					
	$M_{rec} = \frac{M_{Rk}}{\gamma_{GLOB}}$ where M_{RK} is the characteristic moment resistance of the fastener shank and γ_{GLOB} is an overall factor of safety. Unless otherwise stated on the product data sheets, the M_{rec}					
	values in this manual include a safety factor of "2" for static loading.					

2.8

Fastening details	
h _{ET}	Penetration of the fastener point below the surface of the base material
h _{NVS}	Nailhead standoff above the surface fastened into (with nails, this is the
	surface of the fastened material, with threaded studs, the surface of the
	base material).
t _{II}	Thickness of the base material
tı	Thickness of the fastened material
Σt_{l}	Total thickness of the fastened material (where more than one layer is
	fastened)

Characteristics of steel and other metals							
f_y and f_u	Yield strength and ultimate tensile strength of metals (in N/mm² or MPa)						

Characteristics of concrete and masonry					
f _c	Compressive strength of cylinder (150 mm diameter, 300 mm height)				
f _{cc}	Compressive strength of cube (150 mm edge length)				
f _{c,100} / f _{cc,200}	Compressive strength of 100 mm diameter cylinder / cube with 200 mm				
	edge length				

In some cases building material grades are used to describe the suitable range of application. Examples of European concrete grades are C20/25, C30/35, C50/55.

Approvals, technical assessments and design guidelines are given on the product information sheets as abbreviations of the names of the issuing institutes or agencies. Following is a list of abbreviations:

Abbreviation	Name of institute or agency / description	Country
FM	Factory Mutual (insurers' technical service)	USA
UL	Underwriters Laboratories (insurers' technical service)	USA
ICC	International Code Council	USA
SDI	Steel Deck Institute (technical trade association)	USA
CSTB	Centre Scientifique et Technique du Bâtiment	
	(approval agency)	France
DIBt	Deutsche Institute für Bautechnik (approval agency)	Germany
SOCOTEC	SOCOTEC (insurers' technical service)	France
ÖNORM	Österreichische Norm / Austrian National Standard	Austria
SCI	Steel Construction Institute	Great Britain

8/2011 2.9

ABS	American Bureau of Shipping (international classification
	society for ship and marine structures)
LR	Lloyd's Register (international classification
	society for ship and marine structures)
GL	Germanischer Lloyd (international classification
	society for ship and marine structures)
DNV	Det Norske Veritas (international classification
	society for the marine and energy industry)

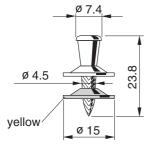
2.10

Contents DX / GX fastener

Designation	Description	Page
Profiled metal sheeting na	ails	
X-ENP	Siding and Decking Nail	2.15
SDK2	Sealing Caps for Cladding Fastening	2.23
X-ENP2K	Siding and Decking Nail	2.25
X-EDNK22 THQ12,		
X-EDN19 THQ12	Diaphragm Decking Nails	2.31
NPH	Siding and Decking Nails to Concrete	2.35
Composite connectors		
X-HVB	Shear Connectors	2.39
General purpose nails		
X-U	Universal Nails	2.47
X-C	Concrete Nails	2.57
X-S	Steel Nails	2.63
X-EGN,		
X-GHP,		
X-GN	Gas Nails	2.67
DS	Heavy Duty Nails for Concrete	2.73
EDS	Heavy Duty Nails for Steel	2.79
Application specific nails		
X-CR	Stainless Nails for Steel	2.85
X-CR	Stainless Nails for Concrete	2.89
X-CT	Temporary Nails for Concrete	2.97
DNH,	remporary mails for concrete	2.51
X-DKH	DX-Kwik Nails for Concrete (pre-drilled)	2.101
A-DIN I	DX-RWIK Nails for Concrete (pre-drilled)	2.101
Threaded studs		
X-M6H,		
X-M8H	DX-Kwik Threaded Studs for Concrete (pre-drilled)	2.101
X-M6/X-W6/		
X-F7,		
X-M8,		
M10 / W10	Threaded Studs for Concrete	2.107
		0.11

Designation	Description	Page
X-EM6H/X-EW6H,	Description	rage
X-EF7H.		
X-EM8H,		
X-EM10H/X-EW10H	Threaded Studs	2.113
X-BT	Stainless Steel Threaded Studs	2.119
X-CRM	Stainless Steel Threaded Studs	
7. 01111	for Concrete and Steel	2.125
	00 0 0	
Grating fasteners		
X-FCM	Grating Fastening System	2.131
X-GR	Grating Fastening System	2.139
X-GR-RU	Grating Fastening System	2.145
X-MGR	Grating Fastening System	2.151
X-FCP	Checker Plate Fastening System	2.155
	,	
Fasteners for soft materia	l and formwork	
X-IE	Wall Insulation Fastener	2.165
X-SW	Soft Washer Fastener	2.159
X-FS	Form Stop	2.169
Hanger fasteners		
X-HS,		
X-CC	Threaded Hanger and Loop Hanger Systems	2.173
X-HS MX ,9		
X-CC MX	Electrical Hanger Systems	2.173
X-HS-W	Hanger System	2.185
Electrical fasteners		
X-EKB,		
X-ECH	Electrical Cable Fasteners	2.191
X-FB (X-DFB/X-EMTC)	Electrical Conduit Fasteners	2.199
X-ECT MX,		
X-EKS MX,		
X-EMTSC MX	Electrical Cable Tie	2.205
X-ET	Fastening Plastic Electrical Cable Trays	2.211
2.12		0.10044

Designation	Description	Page
Tools and equipment		
DX 460	General Purpose Tool	2.217
DX 351	Interior Finishing Tool and for	
	X-BT Studs (DX 351-BT)	2.221
DX-E 72	General Purpose Tool	2.223
DX 36	General Purpose Tool	2.224
DX 76 PTR	Heavy Duty Tool for Siding and Decking,	
	HVB, Grating	2.225
DX-860	Stand-up Tool for Decking	2.231
Cartridges		2.232
GX 100	Gas Tool for Interior Finishing and	
GX 100-E	for Electrical Applications	2.233
GX 120	Gas Tool for Interior Finishing and	
GX 120-ME	for Electrical Applications	2.234



X-ENP Siding and Decking Nail

Product data

Dimensions

General information

Material specifications

Carbon steel shank: HRC 58
Zinc coating: 8–16 μm

Fastening tools

Single nail:

DX 76 F15, X-ENP-19 L15

DX 76 PTR with

X-76-F15-PTR fastener guide

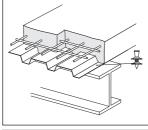
Collated nails:

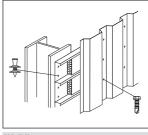
DX 76 PTR, DX 76 MX X-ENP-19 L15 MX,

white magazine strip

DX 860-ENP X-ENP-19 L15 MXR, grey magazine strip

See fastener selection for more details.


Approvals


ETA-04/0101 (Europe), UL R13203, FM 3021719, ICC ESR-2197 (USA), MLIT (Japan), ABS

Applications

Examples

Roof decking

Floor decking

Wall liners

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For out-door applications that can be ensured by using SDK2 sealing caps. During construction exposure to external atmosphere must not exceed 6 Month. Fastening of aluminum sheeting is generally recommended only for indoor conditions.

Load data

Characteristic loads - steel sheeting

Sheeting thickness t ₁ [mm]	Trapezoidal profile (symmetric loading) Char. resistance according to ETA-04/0101 Shear Tension		Liner trays ¹) (asymmetric loading) Char. resistance keeping to ETA-04/0101 Shear Tension	
nominal	V _{Rk} [kN]	N _{Rk} [kN]	V _{Rk} [kN]	N _{Rk} [kN]
0.75	4.70	6.30	3.30	4.40
0.88	5.40	7.20	3.80	5.00
1.00	6.00	8.00	4.20	5.60
1.13	7.00	8.40	4.90	5.90
1.25	8.00	8.80	5.60	6.20
1.50	8.60	8.80	6.00	6.20
1.75	8.60	8.80	6.00	6.20
2.00	8.60	8.80	6.00	6.20
2.50	8.60	8.80	6.00	6.20

- NRk and VRk are valid for steel sheet with minimum tensile strength ≥ 360 N/mm² (≥ S280 EN 10326).
- For intermediate sheet thicknesses, use recommended load for next smaller thickness or linear interpolation.
- ¹⁾ Required load reduction is taken into account in accordance with EN 1993-1-3: 2006, section 8.3 (7) and fig. 8.2. See also construction rules under spacings and edge distances.

Recommended loads - steel sheeting

Sheeting thickness t _i [mm]	Trapezoidal profile (symmetric loading) Recommended loads Shear Tension		Liner trays ¹⁾ (asymmetric loading) Recommended loads Shear Tension	
nominal	V _{rec} [kN]	N _{rec} [kN]	V _{rec} [kN]	N _{rec} [kN]
0.75	2.50	3.35	1.75	2.35
0.88	2.90	3.85	2.00	2,70
1.00	3.20	4.25	2.25	3.00
1.13	3.75	4.50	2.65	3.15
1.25	4.25	4.70	3.00	3.30
1.50	4.60	4.70	3.20	3.30
1.75	4.60	4.70	3.20	3.30
2.00	4.60	4.70	3.20	3.30
2.50	4.60	4.70	3.20	3.30

- Nrec and Vrec are valid for steel sheet with minimum tensile strength ≥ 360 N/mm² (≥ S280 EN 10326).
- For intermediate sheet thicknesses, use recommended load for next smaller thickness or linear interpolation.
- Recommended loads N_{rec} and V_{rec} are appropriate for Eurocode 1 wind loading design with a partial safety factor γ_F =1.5 for wind load and a partial resistance factor γ_M = 1.25 for the fastening.
- Property Required load reduction is taken into account in accordance with EN 1993-1-3: 2006, section 8.3 (7) and fig. 8.2. See also construction rules under spacings and edge distances.

2.16 9/2011

Recommended loads – aluminum sheeting¹) with f_u ≥ 210 N/mm²

Trapezoidal profile (symmetric loading)

Thickness t _I [mm]	Shear V _{rec} [kN]	Tension N _{rec} [kN]
0.60	0.75	0.35
0.70	0.90	0.50
0.80	1.00	0.65
0.90	1.20	0.80
1.00	1.30	0.95
1.20	1.55	1.30
1.50	1.85	1.45
2.00	2.55	1.90

Only recommended for indoor applications. Constraint forces and corrosion aspects have to be considered.

Recommended loads - other applications

V _{rec} [kN]	N _{rec} [kN]
4.6	2.4

- Fastened parts: clips, brackets, etc.; thick steel parts (t_{l.max} = 2.5 mm).
- Redundancy (multiple fastening) must be provided.
- The possibility of prying effects has to be considered
- Failure of the fastened part is not considered in these values of N_{rec}, V_{rec}.
- · Valid for predominantly static loading
- Global factor of safety is ≥ 2 based on 5% fractile value

Design

Depending on the verification concept, the corresponding design criteria are given as following.

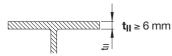
Working load co	ncept	Partial safety concept
Tensile loads	$N_{Sk} \le N_{rec}$	$N_{Sd} \le N_{Rd}$
Shear loads	$V_{Sk} \le V_{rec}$	$V_{Sd} \le V_{Rd}$

N-V Interaction

For combined tensile and shear forces on the fastener, a linear function has to be used.

[·] For intermediate sheet thicknesses, use recommended load for next smaller thickness.

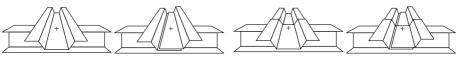
Recommended loads N_{rec} and V_{rec} are appropriate for Eurocode 1 wind loading design with a partial safety factor of γ_F =1.5 for wind load and a partial resistance factor γ_M = 1.25 for the fastening.


Test Data

Testing and evaluation of design data have been done in accordance to European Technical Approval ETA-04/0101 which refers to EN 1993-1-3. The test procedure is briefly introduced in part 4 Principles and Technique of this manual. The accurate scope of required testing is summarized in the paper Powder-actuated fasteners in steel construction, published in the STAHLBAU-Kalender 2005 (Publisher Ernst & Sohn, 2005, ISBN 3-433-01721-2). English Reprints of the paper can be distributed per request.

Application requirements

Thickness of base material


Steel thickness t_{II}

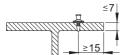
Thickness of fastened material

 $\Sigma t_{l \text{ tot}} \leq 4.0 \text{ mm}$

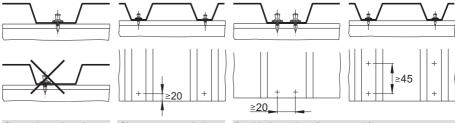
Sheet thicknesses and overlap types

(a) (b) single side lap	(c) end overlap	(d) side lap and end overlap
-------------------------	--------------------	---------------------------------

Nominal sneeting thickness til [mm]	Allowable overlap types
0.63-1.00	a, b, c, d
> 1.00–1.25	a, c
> 1.25–2.50	a

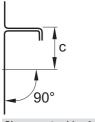

With the above recommended sheet thickness and overlap types, it is not necessary to take into account the effect of constraints due to temperature for steel grades up to S320 (EN 10326). For steel grade S350 (EN 10326) it shall be considered for design. Sheets of grade S350 on base material $t_{\rm II} \ge 8$ mm have been verified by Hilti, forces of constraint can be neglected.

2.18 9/2011

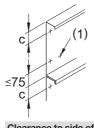

Spacing and edge distances (mm)

Trapezoidal profiles

Centre fastenings in ribs

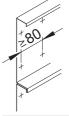

Clearance to end of sheet

Double fastenings (asymmetric)


Note:

Reduce tensile resistance per fastener to 0.7 N_{Rk} or 0.7 $N_{\text{rec}}.$

Liner trays

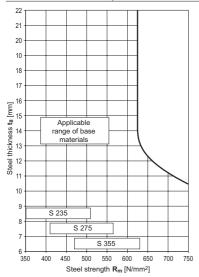

Clearance to side of sheet

Clearance to side of sheet

Clearance to end of sheet

Fastener spacing along sheet

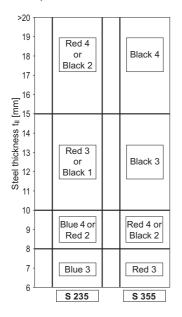
When driving the fastener, the fastening tool needs to be positioned perpendicular to the surface. If c > 75 mm, it is recommended to drive an additional fastener at the other side of the tray. This additional fastener is indicated with (1) in the graph above.


Corrosion information

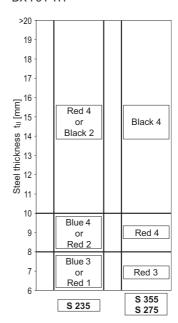
The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For outdoor applications that can be ensured by using **SDK 2** sealing caps. During construction exposure to external atmosphere must not exceed 6 Month. Fastening of Aluminum sheeting is generally recommended only for indoor conditions.

Application limit

X-ENP-19 with DX 76, DX 76 PTR and DX 860-ENP



Fastener selection and system recommendation					
Fasteners			Tools	Fastener guide	
	Designation	Item no.	Designation	Designation	
Single nail:	X-ENP-19 L15	283506	DX 76 PTR	X-76-F15-PTR	
			DX 76 F15		
Collated nails:	X-ENP-19 L15 MX,	283507	DX 76 PTR		
	white cartridge strip		DX 76 MX		
	X-ENP-19 L15 MXR,	283508	DX 860-ENP		
	grey cartridge strip				
Piston:	X-76-P-ENP-PTR		DX 76 PTR		
	X-76-P-ENP		DX 76		
			DX 860-ENP		

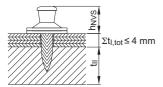


Cartridge selection and tool energy setting

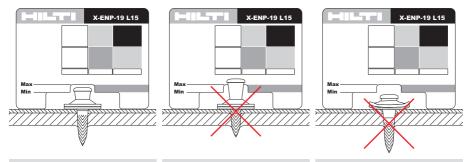
DX 76, DX 860-ENP

DX 76 PTR

Fine adjustment by installation tests on site.


Note for S275:

Start with recommendation for S355. In case of too much energy: reduction of tool energy setting or change of cartridge colour till correct nail head stand-offs h_{NVS} are achieved.



Fastening quality assurance

Fastening inspection

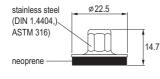
 $h_{NVS} = 8.2-9.8 \text{ mm for } t_{l,tot} \le 4 \text{ mm}$

 $h_{NVS} = 8.2-9.8 \text{ mm}$

h_{NVS} > 9.8 mm (washers are not compressed)

h_{NVS} < 8.2 mm (washers are strongly damaged by the tool piston)

Visible inspection: Properly driven fastener. Piston mark clearly visible on the washer.

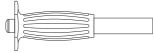


SDK2 Sealing Caps for Cladding Fastening

Product data

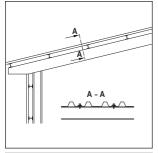
Dimensions

SDK 2 sealing cap


General information

Compatible DX fasteners

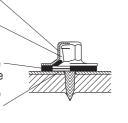
X-ENP-19 L15 Base material thickness $t_{||} \ge 6 \text{ mm}$


Fastening tool

SW/SDK2 setting tool

Applications

Examples


Roof and wall cladding on single skin buildings

Stainless steel cap not affected by atmospheric corrosion

Space under the cap isolated from the atmosphere

Neoprene washer insulates against contact corrosion and seals the space under the cap-off from the atmosphere

Pressure on the washer seals the gap between the sheet and the base steel

Corrosion protection

Fastening quality assurance

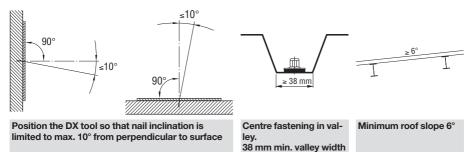
Fastening inspection

For detailed information on X-ENP-19 L15 please see the according product pages.

X-ENP-19 L15

Maximum thickness of single layer (type a):

h_{NVS} t_{I, max.} = 1.5 mm Total thickness of end overlap (type c):

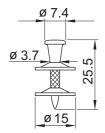

 $\Sigma t_{l. tot.} \le 2.5 \text{ mm}$

 $h_{NVS} = 8.2-9.8 \text{ mm}$

Note:

It has to be ensured, that the fastened sheet is properly compressed to the base material and no gap remains at fastening point location.

Installation


2.24 8/2011

X-ENP 2K Siding and Decking Nail

Product data

Dimensions

General information

Material specifications

Carbon steel shank: HRC 55.5 Zinc coating: 8-16 μm

Fastening tools

Single nail:

DX 76 PTR with X-ENP 2K-20 L15

X-76-F15-PTR fastener guide

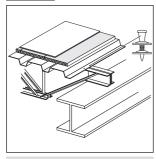
Collated nails:

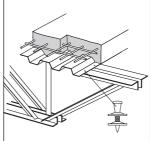
DX 76 PTR X-ENP 2K-20 L15 MX

(green magazine strip)

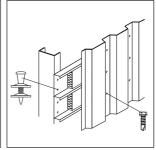
See fastener selection for more details.

Approvals


CSTB (France), BUtgb (Belgium)


Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

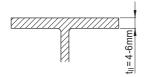

Examples

Roof and floor decking

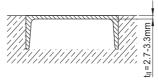
Wall liners

2.25 8/2011

Load data

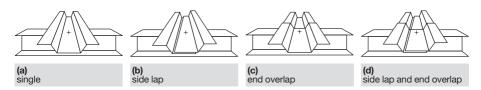

Reco	 	

	iccommicmac	a loads				
Sheeting thickness t ₁ [mm]		Trapezoidal profile (symmetric		Liner trays (asymmetric)		
n	ominal	minimum	N _{rec} [kN]	V _{rec} [kN]	N _{rec} [kN]	V _{rrec} [kN]
C).63	_	1.20	1.40	_	_
C).75	0.65	1.80	1.70	1.25	1.20
C).88	0.77	2.10	2.00	1.50	1.40
1	.00	0.89	2.70	2.20	1.90	1.55
1	.13	1.02	3.00	2.60	2.10	1.80
1	.25	1.13	3.00	3.00	2.10	2.10
1	.50	1.36	3.00	3.00	2.10	2.10
1	.75	1.60	3.00	3.00	2.10	2.10
2	2.00	1.84	3.00	3.00	2.10	2.10


- Recommended working loads valid for steel sheet minimum tensile strength ≥ 360 N/mm².
- For intermediate sheet thicknesses, use recommended load for next smaller thickness.
- Recommended loads include safety factor ≥ 2.0 applied to characteristic loads N_{Rk} and V_{Rk} and are appropriate for EC 1 (or similar) wind loading designs.
- For steel thickness, t_{II} = 3-4 mm, reduce all recommended loads to 0.9 kN.

Application requirements

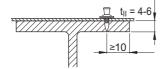
Thickness of base material

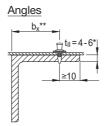

 $t_{II} = 4.0-6.0$ mm for general shapes

 $t_{II} = 2.7-3.3$ mm for concrete inlays

Thickness of fastened material

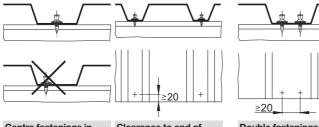
Sheet thicknesses and overlap types




Nominal sheeting thickness	Overlap types t _{II} = 3–4 mm		
4 [imin]	41 = 3-4 11111	4124111111	
0.75	a, b, c, d	a, b, c, d	
> 0.75–1.00	a, c	a, b, c, d	

- The recommendations apply if the supporting structure is sufficiently flexible so that forces of constraint from temperature differentials can be neglected.
- These recommendations are valid for sheets up to S350GD.

Spacing and edge distances (mm)


Rolled I or wide flange shapes

- * For t_{II} = 3 to 4 mm, restrictions on application. See approval or contact Hilti.
- ** Maximum recommended $b_x \le 8 \times t_{II}$ however, jobsite verification advisable.

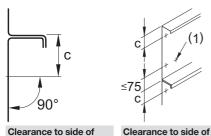
Trapezoidal profiles

Centre fastenings in ribs

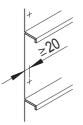
Clearance to end of sheet

Double fastenings

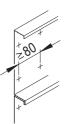
Note:


Reduce tensile resistance per fastener to 0.7 N_{rec}.

2.27 8/2011



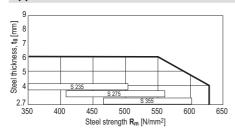
sheet



When driving the fastener, the fastening tool needs to be positioned perpendicular to the surface. If $c > 75 \, \text{mm}$, it is recommended to drive an additional fastener at the other side of the tray. This additional fastener is indicated with (1) in the graph above.

sheet

Clearance to end of sheet

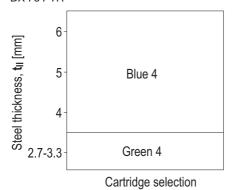


Fastener spacing along sheet

Corrosion information

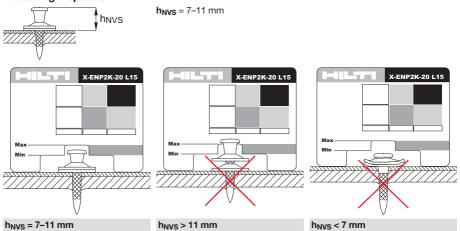
The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see corresponding chapter in **Direct Fastening Principles and Technique** section.

Application limits



Fastener selection and system recommendation							
Fasteners	Designation	Item no.	Tools Designation	Fastener guide Designation			
Single nail:	X-ENP 2K-20 L15	385133	DX 76 PTR	X-76-F15-PTR			
Collated nails:	X-ENP 2K-20 L15 MX	385134	DX 76 PTR				
Piston:	X-76-P-ENP2K-PTR		DX 76 PTR				

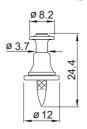
Cartridge selection and tool energy setting


DX 76 PTR

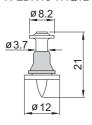
Fine adjustment by installation tests on site.

Fastening quality assurance

Fastening inspection



X-EDNK 22 THQ 12, X-EDN 19 THQ 12 Diaphragm Decking Nails


Product data

Dimensions

X-EDNK22 THQ12 M

X-EDN19 THQ12 M

General information

Material specifications

Carbon steel shank: HRC 55.5
Zinc coating: 5–13 μm

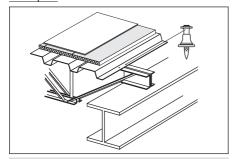
Recommended fastening tool

DX 860-HSN	Collated nails:
	X-EDNK22 THQ12 M,
	grey magazine strip
	X-EDN19 THQ12 M,
	white magazine strip

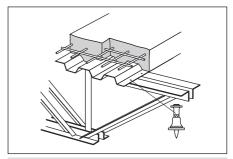
See fastener selection for more details.

Approvals

FM, UL, ICC, SDI (USA)



lote:


Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples

Roof decking (diaphragm design)

Floor decking (diaphragm design)

Load data

Design data for use in the U.S.A.

Diaphragm strength

Approvals provide load tables or calculation procedures for determination of the allowable strength (in lbs/ft or kN/m) of a steel deck diaphragm. The allowable diaphragm strength depends on the type, strength and thickness of the decking, the span of the decking, the type and pattern of the deck to frame fasteners (X-EDNK22 or X-EDN19) and the type and spacing of the sidelap connectors (e.g. Hilti sidelap connectors S-SLC 01 and S-SLC 02).

For more details it is referred to the technical literature of Hilti North America ("Steel Deck Fastening Systems" – 2009 Supplement to Hilti North America Product Technical Guide) and the "Decking Design Center" offered on the website www.us.hilti.com as well as the respective approvals.

Recommended shear bearing loads V_{rec}

		X-EDNK22 and X-EDN19		
[Gauge]	[mm]	V _{rec} [lbs]	[kN]	
22	0.76	500	2.20	
20	0.91	600	2.64	
18	1.21	785	3.45	
16	1.52	975	4.29	

- Valid for steel sheet with a minimum tensile strength of 45 ksi (310 N/mm²). Values refer to failure controlled by the single sheet metal attached.
- For intermediate sheet thicknesses, linear interpolation is allowed.
- Recommended loads include safety factor 3.0 applied to mean shear resistance Q_f. An equation for Q_f is
 published in the SDI (Steel Deck Institute) Diaphragm Design Manual, 3rd edition.

Recommended tension load N_{rec}

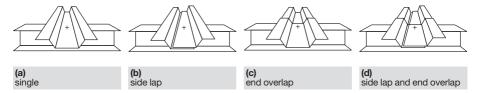
Sheeting thickness t _I				X-EDN19	
[Gauge]	[mm]	N _{rec} [lbs]	[kN]	[lbs]	[kN]
22	0.76	355	1.56	340	1.52
20	0.91	435	1.95	340	1.52
18	1.21	435	1.95	340	1.52
16	1.52	435	1.95	340	1.52

- Valid for steel sheet with minimum tensile strength of 45 ksi (310 N/mm²). Values are either controlled by pullover of sheet or by minimum value of fastener pullout of base metal.
- Values require fastener point penetration of 1/2" (12.7 mm). Higher recommended values might be applicable dependent on the base material thickness (see Hilti North America "Steel Deck Fastening Systems")
- Recommended loads include a safety factor 3.0 applied to mean pullover resistance or a safety factor 5.0
 applied to the mean value of pullout resistance.

Design data for use in Europe

Currently, the X-EDNK22 and the X-EDN19 fasteners are only used in North America. Therefore, no design data is published evaluated in strict compliance with the provisions for European Technical Approvals.

For European markets, the fastener X-ENP2K-20 L15 in connection with the fastening tool DX 76 PTR is recommended for sheet metal fastenings to thin base materials (3 to 6 mm).


Application limits and requirements

Fastening tool DX 860-HSN

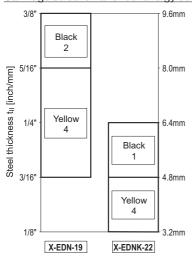
Fastener	Base material pro			
	Thickness		Ultimate tensile strength	
	[inch] [mm]		[ksi]	[N/mm ²]
X-EDNK 22	1/8" to 1/4"	3.2 to 6.35	58 to 91	400–630
X-EDN19	3/16" to 5/16"	4.8 to 8.0	58 to 91	400–630
	5/16" to 3/8"	8.0 to 9.5	58 to 68	400–470

[•] Comment on fastening tool DX 460-SM: This fastening tool is recommended for base material thickness from ³/₁₆" to ³/₁₆" (4.8 to 8.0 mm). The same strength limits apply as with the DX 860-HSN.

Thickness of fastened material, fastener patterns, spacings and edge distance

As part of a steel deck diaphragm, all four fastening types (a), (b), (c) and (d) are executed with the X-EDNK22 and the X-EDN19. The sheet metal thickness typically varies between 22 Gauge (0.76 mm) and 16 Gauge (1.52 mm).

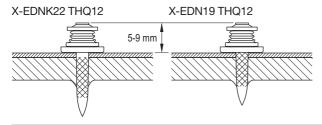
Dependent on the base material thickness and the frame fastener pattern, restrictions on the use of thicker decking might apply. For corresponding details of these provisions, it is referred to the quoted technical literature puplished by Hilti North America. This literature also contains details with respect to fastener patterns, spacings and edge distance adequately addressing the specifics of the diaphragm components used in the North American market.



Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

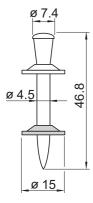
Fastener selection and system recommendation						
Fasteners	Tool					
	Designation	Item no.				
Collated nails:	X-EDNK22 THQ12 M,	34133	DX 860-HSN			
	grey magazine strip					
	X-EDN19 THQ 12 M,	34134				
	white magazine strip					


Cartridge selection and tool energy setting

Fine adjustment by installation tests on site.

Fastening quality assurance

Fastening inspection



NPH siding and decking nails to concrete

Product data

Dimensions

General information

Material specifications

Carbon steel shank: HRC 58
Zinc coating: 8–16 μm

Fastening tool

DX 76, Cartridges: 6.8/18M blue

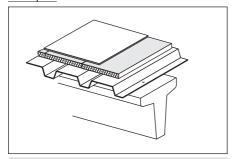
DX 76 PTR with X-76-F-Kwik-PTR fastener guide

See fastener selection for more details.

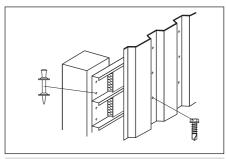
Approvals

SOCOTEC (France)

BUtgb (Belgium)


City of Vienna

Note:


Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples

Wall liners

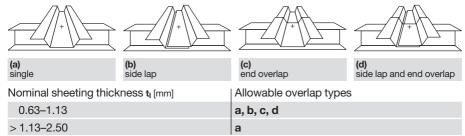
Load data

Reco	mma	hoba	loodo
Reco	mme	naea	ioads

Sheeting thickness t _I [mm] nominal	Trapezoidal profile (symmetric Vrec [kN] Vrec [kN]		Liner trays (asymmetric) N _{rec} [kN] V _{rec} [kN]	
0.75	1.80	1.20	1.30	1.20
0.88	2.10	1.50	1.50	1.50
1.00	2.40	1.80	1.70	1.80
1.13	2.70	2.20	1.90	2.20
1.25	3.00	2.50	2.10	2.50
1.50	3.00	3.00	2.50	3.00
1.75	3.00	3.00	2.50	3.00
2.00	3.00	3.00	2.50	3.00

- Recommended working loads valid for steel sheets with a minimum tensile strength of ≥ 360 N/mm².
- For intermediate sheet thicknesses, use recommended load for next smaller thickness.
- Recommended loads are appropriate for EC1 (or similar) wind loading designs.
- The safety factor included is at least 2.0 applied to the static 5 % fractile value and 1.3 to the cyclic (5000 cycles) 5 % fractile value.

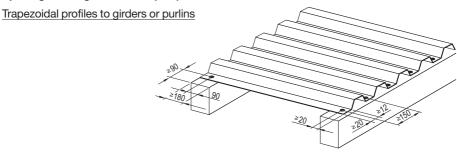
Application requirements

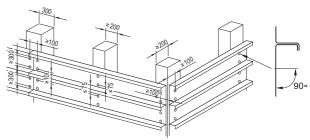

Thickness of base material

Minimum thickness of concrete member

 $h_{min} = 160 \text{ mm}$

Thickness of fastened material


Sheet thicknesses and overlap types


- With the above recommended sheet thickness and overlap types, the effects of temperature induced forces of
 constraint during construction can be neglected.
- These recommendations are valid for sheets up to S350GD.
- With other sheets or overlaps or when unusually large forces of constraint are expected, analyse the structural system to ensure that the shear force acting on the nail does not exceed V_{rec}.

Spacing and edge distances (mm)

Liner trays to columns

Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Ap	plication	n limits

Types of concrete • Precast and cast-in-place pre-stressed concrete

• Precast and cast-in-place reinforced concrete

• Minimum C20/25 ($f_c = 20 \text{ N/mm}^2$, $f_{cc} = 25 \text{ N/mm}^2$)

• Maximum C45/55 (**f**_c = 45 N/mm², **f**_{cc} = 55 N/mm²)

 The NPH/DX-Kwik system has been successfully used in concrete having an in-place cube strength of 70 N/mm²

Minimum strength/age at time of fastening

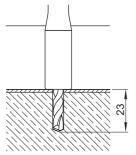
C20/25 concrete must be 28 days old
C45/55 concrete must be 15 days old

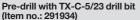
Minimum dimensions of concrete member

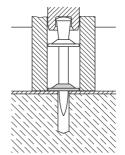
Minimum width = 180 mm
 Minimum thickness = 160 mm

Fastener	sel	lect	tion
	-		

Fasteners Designation	Item no.	Tool Designation	Fastener guide Designation	Piston Designation
NPH2-42 L15	40711	DX 76	X-76-F-Kwik	X-76-P-Kwik
		DX 76 PTR	X-76-F-Kwik-PTR	X-76-P-Kwik-PTR


Cartridge selection and tool energy setting


Cartridges 6.8/18 M blue


Tool energy adjustment by setting tests on site

Fastening quality assurance

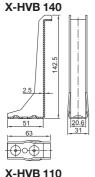
Installation

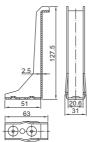
Place fastener with DX 76 PTR

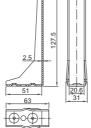
Fastening inspection

NPH2-42 L15

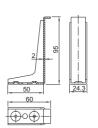
Check for conformity with recommendations (detailing spacing and edge distances for fastening)


Check the nailhead standoff of completed fastenings

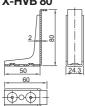

X-HVB shear connectors

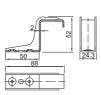

Product data

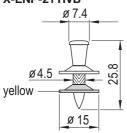
Dimensions



X-HVB 125




X-HVB 95


X-HVB 80

X-HVB 50

X-ENP-21 HVB

General information

Material specifications

X-HVB

Carbon steel: $R_m = 295-350 \text{ N/mm}^2$

Zinc coating: $\geq 3 \mu m$

X-ENP-21 HVB

Carbon steel shank: HRC58 Zinc coating: $8-16 \mu m$

Fastening tools and equipment

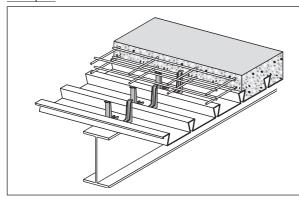
Tool	DX 76	DX 76 PTR	
Fastener guide	X-76-F-HVB	X-76-F-HVB-PTR	
Piston	X-76-P-HVB	X-76-P-HVB-PTR	
Cartridges	6.8/18 M black, red		
	(for details see application		
	limit X-ENP-21 HVB)		

See fastener selection for more details.

Approvals and design guidelines

SOCOTEC (France) DIBt (Germany)

SCI (UK), TZÚS (Czech)


Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook. If the fastening is subject to an approval process or where a design guideline must be used, technical data in the approval or design guideline has precedence over data presented here. Approval copies are available from your Hilti technical advisory service.

2.39 8/2011

Applications

Examples

Shear connectors for building construcions:

- composite beam action
- end anchorage of composite decking
- floor diaphragm
- resist lateral buckling

Design data

Solid slabs

Nominal	Characteristic shear resistance PRk [kN] 1)	Design shear resistance P_{Rd} [kN] ²⁾	Allowable horizontal shear q [kN] ³⁾	Allowable resistance (working load) R _D [kN] ⁴⁾
X-HVB 50	23	18	N.A	13
X-HVB 80	28	23	14	16
X-HVB 95	35	28	17.5	22
X-HVB 110	35	28	17.5	22
X-HVB 125	35	28	17.5	22
X-HVB 140	35	28	17.5	22

 $^{^{9}}$ As defined in EN 1994-1-1 (Nominal strength in AISC-LRFD; unfactored shear resistance in CISC, $\mathbf{Q_k}$ in BS 5950:3:3.1:1990)

²⁾ As defined in EN 1994-1-1 (**Q**_p in BS 5950:3:3.1:1990)

³⁾ Allowable shear in AISC-ASD

⁴⁾ Allowable shear for working load design

Reduction factors for profile metal decks

Ribs transverse to beams

$$k_t = \frac{K}{\sqrt{N_r}} \cdot \frac{b_0}{h_{ap}} \cdot \frac{h_{sc} - h_{ap}}{h_{ap}}$$

EN 1994-1-1 designs:

K = 0.70

N_r = HVBs / rib (≤ 2 in the calculation even if 3 are placed in a rib)

AISC, CISC, BS 5950, other design codes:

K = 0.85

 $N_r = HVBs / rib (1, 2 or 3)$

Ribs parallel to beams

Note: $k_t \le 1.0$

for
$$\frac{b_0}{h_{ap}} \ge 1.8 \Rightarrow k_p = 1.0$$

for $\frac{b_0}{h_{ap}} < 1.8 \Rightarrow k_p = 0.6 \text{ x } \frac{b_0}{h_{ap}} \text{ x } \frac{h_{sc} - h_{ap}}{h_{ap}}$

Note: **k**_p ≤ 1.0

Engineering advice

Connector placement along the beam

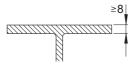
The HVB is a flexible connector and may be uniformly distributed between points where large changes in shear flow occur. These points may be supporting points, points of application of point loads or areas with extreme values of bending moments.

Partial shear connection

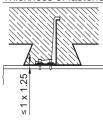
Strength:

The minimum connection depends on the design code used:

- a) In **EN 1994-1-1 and BS 5950** designs, N/N_f , must be at least 0.4. This is increased depending on span length and decking geometry.
- b) In **AISC**, **N/N**_f must be at least 0.25.
- c) In CISC, N/N_f must be at least 0.50.


Deflection control only:

If the shear connection is needed for deflection control only, there is no minimum degree of connection. However, minimum allowable connector spacing applies and steel beam must have enough strength to carry the self-weight and all imposed loads.


Application requirements

Thickness of base material

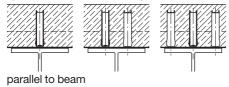
Minimum thickness of steel base material t_{II} = 8 mm

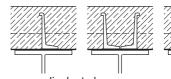
Thickness of fastened material

Maximum thickness of decking $t_l = 1.25 \text{ mm}$

Connector positioning, spacing and edge distances

General positioning

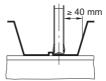




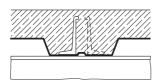
Position the HVBs so that the shear force is transferred symmetrically to the beam. The HVB orientation parallel to the axis of the beam is preferred.

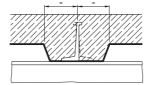
Positioning on metal decks - ribs transverse to beam

1) One, two or three HVB's per rib



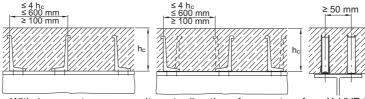
perpendicular to beam




2a) Position in the rib: 1 HVB per rib - leg centred in the rib or 40 mm clearance

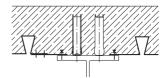
2b) With 2 or 3 HVBs per rib - legs centred in the rib or alternated about the centre

3) Spacing along the ribs


- basic minimum spacing, a ≥ 50 mm
- a ≥ 100 mm for: **b_o/m** < 0.7 and **b_o/h_{ap}** < 1.8
- SDI 3" composite decking (USA)

m = rib spacing

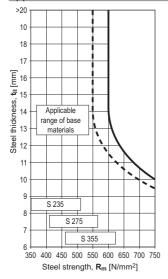
Positioning on solid slabs and metal decks - ribs parallel to beam



- With 1 connector per row, alternate direction of connectors from X-HVB to X-HVB.
- With 2 or 3 connectors per row, alternate direction of connectors inside of each row and from row to row.

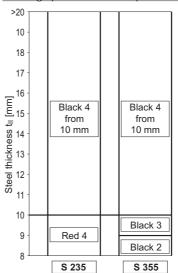
Clearance to metal decking

Split decking if necessary for spacing / clearance


Corrosion information

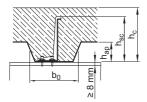
The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres.

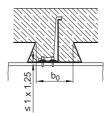
Application limits


Application limits are valid only if correct cartridge and power setting are used!

Application limits X-ENP-21 HVB

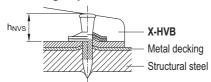
In thermo-mechanically rolled construction steel, e.g. S 355M per EN 10025-4 the application limit is reduced by 50 N/mm²


Cartridge preselection and power setting



Fine adjustment by setting tests on site

Fastener selection



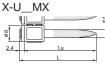
Connector

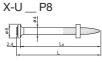
Designation	Item no.	Maximum decking heigh $b_0 / h_{ap} \ge 1.8$	t h _{ap} [mm] b ₀ / h _{ap} < 1.8		
X-HVB 50	56467	Not for use with profiled decking			
X-HVB 80	239357	45	45		
X-HVB 95	239358	60	57		
X-HVB 110	239359	75	66		
X-HVB 125	239360	80	75		
X-HVB 140	239361	80	80		
all connectors with two nails					
X-ENP-21 HVB	283512				

Fastening quality assurance

Fastening inspection

X-ENP-21 HVB $h_{NVS} = 8.2-9.8 \text{ mm}$





X-U General Purpose Nails for Concrete and Steel

Product data

Dimensions

General information

Material specifications

Carbon steel shank: **HRC 58** HRC 59 (X-U 15)

Zinc coating: 5-13 μm

Fastening tools

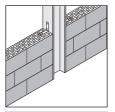
See fastener selection

Approvals

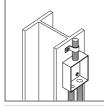
ICC ESR-2269 (USA)

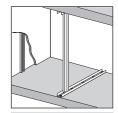
DIBt Z-14.4-517 (Germany)

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.


Applications

X-U 15 P8TH

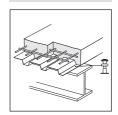

Examples



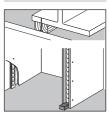
Wall-tie to steel and concrete

Mechanical and electrical fixtures

Drywall track to concrete and steel



Conventional formwork


8/2011

Tagging lables

Tacking of metal decks

Sill plates / 2x4 wood to concrete and steel

The intended use for safety relevant and permanent applications only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres.

Fastenings to concrete

Recommended loads

Loads depending on embedment depth hET:

 $N_{rec} = V_{rec} = 0.4 \text{ kN for } h_{ET} \ge 27 \text{ mm}$ $N_{rec} = V_{rec} = 0.3 \text{ kN for } h_{ET} \ge 22 \text{ mm}$ $N_{rec} = V_{rec} = 0.2 \text{ kN for } h_{ET} \ge 18 \text{ mm}$ $N_{rec} = V_{rec} = 0.1 \text{ kN for } h_{ET} \ge 14 \text{ mm}$

Design conditions:

- For safety relevant fastenings sufficient redundancy of the entire system is required:
 Minimum 5 fastenings per fastened unit.
- All visible failures must be replaced.
- Valid for concrete with strength of f_{cc} ≤ 45 N/mm².
- Valid for predominantly static loading.
- Failure of the fastened material is not considered in recommended loads
- To limit penetration of nail and to increase pull-over load, use nails with washers.

Test data (Examples)

Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual. For more detailed information please contact Hilti.

Pull-out loads

Nails	Mean ultimate pull-out loads N _{u.m} [kN]	Variation coefficient [%]	Embedment depth her [mm]	Concrete strength f _{cc} [N/mm²]
X-U 22	.,	37.8	20.1	54.7
X-U 27	4.04	35.4	24.5	30.9

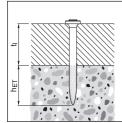
Application requirements

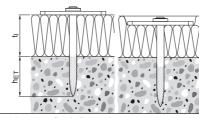
Thickness of base material

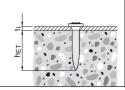
Concrete:

 $h_{min} = 80 \text{ mm}$

Thickness of fastened material


Wood:


 $t_l = 15-57 \text{ mm}$


Fastener selection and system recommendation

Fastening to concrete

Required nail shank length: $L_S = h_{ET} + t_l$ [mm] Recommendation: $h_{ET} = 22 \text{ mm}$

In case flush fastenings are required:

 $L_S = h_{ET} + t_l - 5 [mm]$

Edge distance

Edge distance: c ≥ 70 mm

Cartridge recommendation

Tool energy adjustment by setting tests on site

Fastening to concrete: **6.8/11M yellow cartridge** on green/ fresh and standard concrete

6.8/11M red cartridge on precast, old and hard concrete

Fastenings to steel

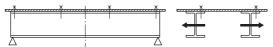
Recommended loads

Fastening of steel sheets and other steel parts with X-U 16 and X-U 19

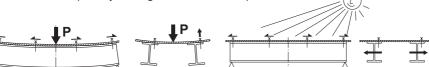
Recommended loads t _i [mm]	X-U_P8/MX N _{rec} [kN]	X-U _ S12 N _{rec} [kN]	V _{rec} [kN]
0.75	1.0	1.4	1.2
1.00	1.2	1.8	1.8
1.25	1.5	2.2	2.6
≥ 2.00	2.0	2.2	2.6

Tacking of steel sheets with X-U 15

according to ECCS-recommendation N73, "Good Construction Practice for Composite Slabs Recommended loads


t _i [mm]	N _{rec} [kN]	V _{rec} [kN]
0.75-1.25	0.6	0.8

Design conditions:


- Recommended working loads valid for steel sheet with minimum tensile strength
 ≥ 360 N/mm².
- For intermediate sheet thicknesses, use recommended load for next smaller thickness.
- In case of a design based on the characteristic resistance, recommended values have to be multiplied by two: => N_{Rk} = N_{rec} · 2.0 V_{Rk} = V_{rec} · 2.0
- For X-U 16 S12: base material thickness t_{II,min} = 8 mm for t_I ≥ 1.5 mm and t_{II,min} = 6 mm for t_I ≤ 1.25 mm
- Other fastened parts: clips, brackets, etc.
- Redundancy (multiple fastening) must be provided.
- Valid for predominantly static loading

Forces of constraint

When fastening large pieces of steel, the possibility of shear loadings from forces of constraint should be considered. Avoid exceeding V_{rec} for the fastener shank!

Deflection due to primary loading

Temperature effect

Fastenings of wood to steel

$$N_{rec} = 0.3 \text{ kN}$$
 $V_{rec} = 0.6 \text{ kN}$

Design conditions:

- For safety-relevant fastenings sufficient redundancy of the entire system is required.
- In case soft material is fastened, its strength determines the loads.
- To limit penetration of nail and to increase pull-over load, use nails with washers.
- Observance of edge distance and fastener spacing in compliance with recognized standards, e.g. DIN 1052.
- With respect to details of fastening wood, chipboard or OSB members to steel base material, it is referred to the German approval DIBt Z-14.4-517.

Application requirements

Thickness of base material

Steel:

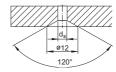
t_{II} ≥ 6.0 mm (fastening steel to steel)

Thickness of fastened material

Steel:

t_l ≤ 3 mm (fastened material not pre-drilled)

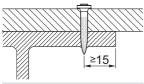
t_I ≤ 6 mm (fastened material pre-drilled)


Wood:

t_{II} ≥ **4.0 mm** (fastening wood to steel)

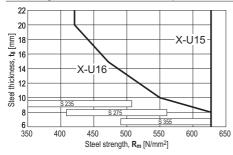
 $t_1 = 15-57 \text{ mm}$

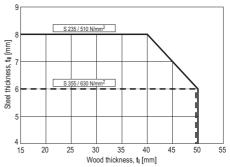
Condition for thick fastened steel parts (t_I > 3 mm)


If a gap between the fastened part and the base material is unacceptable, the fastened part needs to be prepared with drilled holes.

Edge distance

Rolled shapes:


Edge distance: c ≥ 15 mm

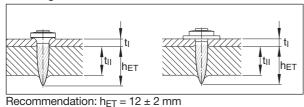


Application limits

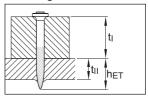
Fastening to steel

Fastening of steel sheets and steel parts to steel Fastening of wood and soft material to steel

X-U 16 P8, X-U 15 P8TH: For steel sheeting with 0.75 mm \leq $t_l \leq$ 1.25 mm sheets


for X-U 22 P8 to X-U 62 P8

Fastener selection and system recommendation


Fastening to steel

Required nail shank length: $L_S = h_{ET} + t_l$ [mm]

Fastening steel to steel

Fastening wood to steel

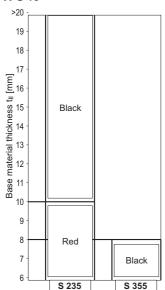
h_{ET} ≥ 8 mm

Cartridge recommendation

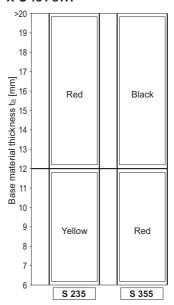
Tool energy adjustment by setting tests on site

Fastening wood to steel: 6.8/11M green or yellow cartridge

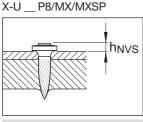
on steel thickness t_{II} < 6 mm


6.8/11M yellow, red or black cartridge

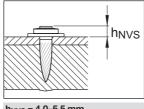
on steel thickness t_{II} ≥ 6 mm



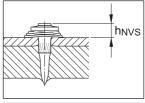
Fastening steel to steel: 6.8/11M cartridge


X-U 15 P8TH

Fastening quality assurance


Fastening inspection

Fastening to steel


 $h_{NVS} = 2.5-4.5 \text{ mm}$

X-U __ S12

 $h_{NVS} = 4.0-5.5 \text{ mm}$

X-U_P8TH

 $h_{NVS} = 4.0-6.0 \text{ mm}$

2.53 8/2011

Fastener program

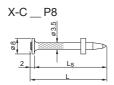
rastener	prog	ram	Standard tools						Spe	cial t	ools	
			×	ω			×	82		82	F8S12 / F8S12	
			DX 460 MX	DX 460 F8	DX 36	E72	351 MX	351	35	DX 462 F	460	
Fastener	Item no.	L _S [mm]	ă	ă	ă	ă	ă	ă	ă	ă	ăă	Key applications
X-U 16 MX	237344	16										Sheet metal on steel
X-U 19 MX	237345	19										Sheet metal on steel
X-U 22 MX	237346	22										Sheet metal on concrete
X-U 27 MX	237347	27										Sheet metal on concrete
X-U 32 MX	237348	32										Wood on concrete/steel
X-U 37 MX	237349	37										Wood on concrete/steel
X-U 42 MX	237350	42										Wood on concrete/steel
X-U 47 MX	237351	47										Wood on concrete/steel
X-U 52 MX	237352	52										Wood on concrete/steel
X-U 57 MX	237353	57										Wood on concrete/steel
X-U 62 MX	237354	62										Wood on concrete/steel
X-U 72 MX	237356	72										Wood on concrete/steel
X-U 16 P8	237330	16										Sheet metal on steel
X-U 19 P8	237331	19										Sheet metal on steel
X-U 22 P8	237332	22										Sheet metal on concrete
X-U 27 P8	237333	27										Sheet metal on concrete
X-U 32 P8	237334	32										Wood on concrete/steel
X-U 37 P8	237335	37										Wood on concrete/steel
X-U 42 P8	237336	42										Wood on concrete/steel
X-U 47 P8	237337	47										Wood on concrete/steel
X-U 52 P8	237338	52										Wood on concrete/steel
X-U 57 P8	237339	57										Wood on concrete/steel
X-U 62 P8	237340	62										Wood on concrete/steel
X-U 72 P8	237342	72										Wood on concrete/steel
X-U 16 P8TH	237329	16										Sheet metal on steel, *)
X-U 19 P8TH	385781	19										Sheet metal on steel, *)
X-U 27 P8TH	385782	27										Sheet metal on concrete, *)
X-U 15 MXSP	383466	16										Sheet metal on steel
X-U 15 P8TH	237328	16										Sheet metal on steel

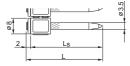
*) firm hold down

			Star	ndarc	tool	s	ı		Spe	cial t	ools	
Fastener	Item no.	L _S [mm]	DX 460 MX	DX 460 F8	DX 36	DX E72	DX 351 MX	DX 351 F8	DX 35	DX 462 F8	DX 460 F8S12 / DX 462 F8S12	Key applications
X-U 27 P8S15	237371	27										High pull-over strength
X-U 32 P8S15	237372	32										High pull-over strength
X-U 32 P8S36	237374	32										Soft material on concr./steel
X-U 52 P8S36	237376	52										Soft material on concr./steel
X-U 72 P8S36	237379	72										Soft material on concr./steel
X-U 16 S12	237357	16										High pull-over strength
X-U 19 S12	237358	19										High pull-over strength
X-U 22 S12	237359	22										High pull-over strength
X-U 27 S12	237360	27										High pull-over strength
X-U 32 S12	237361	32										High pull-over strength

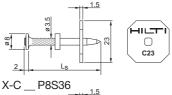
⁼ Recommended

⁼ Feasible




X-C Nails for Concrete and Sand lime-Masonry

Product data


Dimensions

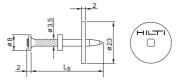
X-C _ MX

X-C P8S23

General information

Material specifications

Carbon steel shank: HRC 53
HRC 58 *)


Zinc coating: 5–13 µm

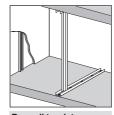
*) X-C 82, 97 and 117 P8 $(d_{nom} = 3.7 \text{ mm})$

Fastening tools

DX 460, DX 460 MX, DX 36, DX-E72, DX 35 See fastener selection for more details.

X-C __ P8S23T (for tunneling applications)

Applications


Examples

Conventional Formwork

System Formwork

Drywall track to concrete

8/2011

Load data

Recommended loads

Fastening wood to concrete:

$$N_{rec} = V_{rec} = 0.4 \text{ kN for } h_{ET} \ge 27 \text{ mm}$$

 $0.3 \text{ kN for } h_{ET} \ge 22 \text{ mm}$
 $0.2 \text{ kN for } h_{ET} \ge 18 \text{ mm}$
 $0.1 \text{ kN for } h_{ET} \ge 14 \text{ mm}$

Fastenings to sandlime masonry:

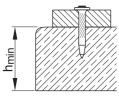
$$N_{rec} = V_{rec} = 0.4 \text{ kN for } h_{ET} \ge 27 \text{ mm}$$

Design conditions:

- For safety relevant fastenings sufficient redundancy of the entire system is required: minimum 5 fastenings per fastened unit.
- All visible failures must be replaced.
- Valid for concrete with strength of **f**_{cc} < 30 N/mm².
- Valid for predominantly static loading.
- Failure of the fastened material is not considered in recommended loads.
- To limit penetration of nail in soft material and to increase pullover load, use nails with washers.

Test data)

Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct fastening principles and technique** section of this manual. For more detailed information please contact Hilti.


Pull-out loads

Nail	Mean ultimate pull-out loads $N_{u,m}$ [kN]	Variation coefficient [%]	Embedment depth h ET [mm]	Concrete strength f _{cc} [N/mm²]
X-C 22	3.15	25	19.1	32.7
X-C 62	4.28	41	22.9	32.0

Application requirements

Thickness of base material

Concrete

 $h_{min} = 80 \text{ mm}$

Thickness of fastened material t₁ ≤ 50.0 mm

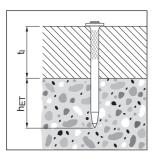
Edge distances [mm]

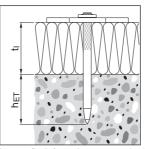
c ≥ 70 mm

Corrosion information

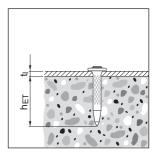
The intended use for safety relevant and permanent applications only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres.

Fastener selection and system recommendation


Fastener selection


Required nail shank length:

$$L_S = h_{ET} + t_I [mm]$$


Recommendation:

Concrete $h_{ET} = 22 \text{ mm}$ Sandlime masonry $h_{FT} = 27 \text{ mm}$

In case flush fastenings are required: Ls = het + t_I - 5 [mm]

System recommendation

Nails						Tools						
					Χ	F8			Σ	Р8		
	Item no. Packs of	Packs of	Ls	d _{nom}	460	DX 460	36	E72	351	351	35	
Fastener	1000 nails	100 nails	[mm]	[mm]	ă	ă	ă	ă	ă	ă	ă	Key applications
X-C 22 P8	388527	388534	22	3.5								Thin metall parts to concrete
X-C 27 P8	388528	388535	27	3.5								Thin metall parts to concrete
X-C 32 P8	388529	388536	32	3.5								Thin metall parts to concrete
X-C 37 P8	388530	388537	37	3.5								Thin metall parts to concrete
X-C 42 P8	388531	388538	42	3.5								Soft mat., wood on concrete
X-C 47 P8	388532	388539	47	3.5								Soft mat., wood on concrete
X-C 52 P8	388533	388540	52	3.5								Wood on concrete
X-C 62 P8	414468	388541	62	3.5								Wood on concrete
X-C 72 P8	414469	388542	72	3.5								Wood on concrete
X-C 82 P8		360930	82	3.7								Wood on concrete
X-C 97 P8		360931	97	3.7								Wood on concrete
X-C 117 P8		360933	117	3.7								Wood on concrete
X-C 20 THP	388504	388505	20	3.5								Thin metall parts to concrete
X-C 22 P8TH	388506	388507	22	3.5								Thin metall parts to concrete
X-C 27 P8TH		388508	27	3.5								Thin metall parts to concrete
X-C 27 P8S23	388543	388548	27	3.5								High pull-over strength on concrete
X-C 32 P8S23	388544	388549	32	3.5								High pull-over strength on concrete
X-C 37 P8S23	388545	388550	37	3.5								High pull-over strength on concrete
X-C 42 P8S23	388546	388551	42	3.5								High pull-over strength on concrete
X-C 47 P8S23	388547	388552	47	3.5								High pull-over strength on concrete
X-C 37 P8S36	388553		37	3.5								High pull-over strength on concrete
X-C 52 P8S36	388554		52	3.5								High pull-over strength on concrete
X-C 62 P8S36	388555		62	3.5								High pull-over strength on concrete
X-C 32 P8S23T	34456		32	3.5								Tunneling applications
X-C 37 P8S23T	34457		37	3.5								Tunneling applications

■ recommended

feasible

Nails						ols	•					
					Σ	82			Σ	82		
Fastener	Item no. Packs of 1000 nails	Packs of 100 nails	L _S	d _{nom}	9	DX 460	DX 36	DX E72	DX 351	DX 351	DX 35	Key applications
X-C 20 MX	388509	388518	20	3.5								Thin metall parts to concrete
X-C 27 MX	388510	388519	27	3.5								Thin metall parts to concrete
X-C 32 MX	388511	388520	32	3.5								Thin metall parts to concrete
X-C 37 MX	388512	388521	37	3.5								Thin metall parts to concrete
X-C 42 MX	388513	388522	42	3.5								Soft mat., wood on concrete
X-C 47 MX	388514	388523	47	3.5								Soft mat., wood on concrete
X-C 52 MX	388515	388524	52	3.5								Wood on concrete
X-C 62 MX	388516	388525	62	3.5								Wood on concrete
X-C 72 MX	388517	388526	72	3.5								Wood on concrete

MX: collated nails for magazine

■ recommended

feasible

Cartridge recommendation:

Green concrete:	6.8/11M green
Normal concrete:	6.8/11M yellow
Sandlime masonry:	6.8/11M green

Tool energy adjustment by setting tests on site.

X-S Drywall Fasteners to Steel

Product data

Dimensions

X-S13 THP

X-S16 P8TH

General information

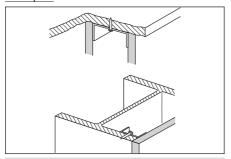
Material specifications

Carbon steel shank:

X-S 16 P8 TH HRC 55.5
X-S13 THP/MX HRC 52.5
Zinc coating: 5–13 μm

Fastening tool

DX 460, DX 460 MX, DX 36, DX 351, DX 351 MX, DX-E 72

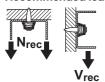

Approvals

ICC (USA): X-S (ESR-1752)

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples



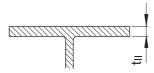
Drywall tracks to steel

Load data

Recommended loads

Steel

0.4 kN


Design conditions:

- Minimum 5 fastenings per fastened unit
- All visible failures must be replaced

Application requirements

Thickness of base material

Steel

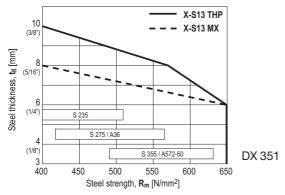
t_{II} ≥ 3 mm

Thickness of fastened material

Wooden track: $t_l \le 24 \text{ mm}$ Metal track: $t_l \le 2 \text{ mm}$

Edge distances

c ≥ 15 mm


Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see corresponding chapter in **Direct Fastening Principles and Technique** section.

Application limits

Steel

Fastener selection and system recommendation

Fastener selection

	Application	Base material		
X-S 16	Metal track	Steel	П	increa
X-S 13	Metal track	Steel	7	asing ngth

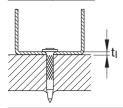
System recommendation

Fastener program Statement Pro								Standard tools					
Fastener	Item no. Packs of 1000 nails	Item no. Packs of 100 nails	L _S [mm]	d _{nom} [mm]	DX 460 MX	DX 460 F8	DX 36	DX E72	DX 351 MX	DX 351 F8	DX 35		
X-S 13 THP	274061	274059	13	3.7									
X-S 16 P8 TH	388842		16	3.7									
X-S 13 MX	274062	274060	13	3.7									

Cartridge selection and tool energy setting

Cartridge recommendation:

6.8/11M yellow or red cartridge on steel thickness $t_{\parallel} \ge 6 \text{ mm}$


6.8/11M green or yellow cartridge on steel thickness t_{II} < 6 mm

Tool energy adjustment by setting tests on site.

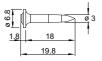
Fastening quality assurance

Fastening inspection

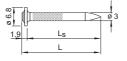
Fastening to steel

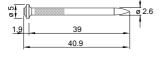
 $X-S: h_{NVS} = 2-4 mm$

X-EGN, X-GHP, X-GN: GX Fasteners


Product data

Dimensions


X-EGN 14


X-GHP 18

X-GN 20/27/32

X-GN 39

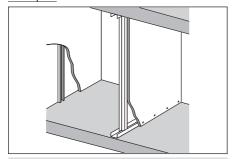
General information

Material specifications

-		
Carbon steel shank:	X-EGN	HRC 58
	X-GHP	HRC 58
	X-GN	HRC 53.5
Zinc coating:	2-8 um	

Fastening tool

GX 120, GX 120-ME GX 100, GX 100 E


Approvals

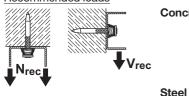
ICC, ESR 1752 (USA): X-GN 20/27/32, X-EGN 14, X-GHP 18/20/24

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples

Drywall tracks to concrete and steel


Electrical applications

Load data

Design data

Recommended loads

Concrete

 $N_{rec} = V_{rec} = 0.4 \text{ kN for } h_{ET} \ge 27 \text{ mm}$ **0.3 kN** for $h_{ET} \ge 22 \text{ mm}$ **0.2 kN** for $h_{ET} \ge 18 \text{ mm}$ **0.1 kN** for $h_{ET} \ge 14 \text{ mm}$

 $N_{rec} = V_{rec} = 0.4 \text{ kN}$

Design conditions:

- Minimum 5 fastenings per fastened unit
- All visible failures must be replaced

Test data

Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the Direct Fastening Principles and Technique section of this manual. For more detailed information please contact Hilti.

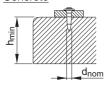
Load capacity of the nails:

Fastenings to concrete

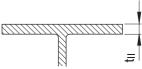
Nail	Average tensile failure load N _{u,m} [kN]	Scatter %	Embedment depth hET [mm]	Concrete strength f cc [N/mm²]
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-GN 27 MX	1.91	47.1	19.2	23.7

Fastenings to steel

Nail	Average	Scatter	Embedment	Steel	Steel
	tensile failure load		depth	thickness	strength
	N _{u,m} [kN]	%	h _{ET} [mm]	t _{ll} [mm]	f _u [N/mm²]
X-EGN 14 MX	3.62	13.7	8.6	6	543


2.68 8/2011

Application requirements

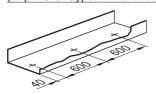

Thickness of base material

Concrete

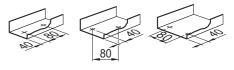
 $h_{min} = 60 \text{ mm}$ ($d_{nom} = 3.0 \text{ mm}$)

Steel

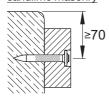
t_{II} ≥ 4 mm

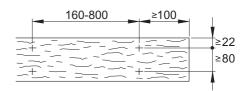

Thickness of fastened material

Wooden track: $t_1 \le 24 \text{ mm}$ Metal track: $t_1 \le 2 \text{ mm}$


Spacing and edge distances (mm)

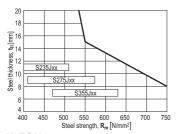
Spacing along track


(as per U.S. Gypsum Handbook)


All track ends (cut-outs for doors), secure with 2 nails

Distance to edge of concrete / sandlime masonry

Fastener spacings on wood:


Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

Steel

X-EGN 14

Fastener selection and system recommendation

Fastener selection

Fastening to concrete / sandlime masonry

	Application	Base material	
X-GN 39	Wooden track (t _l ≤ 24 mm)	Concrete/sandlime masonry	
X-GN 27	Metal track	Concrete/sandlime masonry	
X-GN 20	Metal track	Concrete/sandlime masonry	
X-GHP	Metal track	Concrete/sandlime masonry	

Fastening to steel

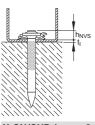
V =01144	Application	Base material	
X-EGN 14	Metal track	Steel	

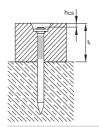
System recommendation

	Item no.	L _s [mm]	L [mm]	d _{nom} [mm]
X-EGN 14 MX	340231	14	15.8	3.0
X-GHP 18 MX	340228	18	19.8	3.0
X-GHP 20 MX	285724	20	21.8	3.0
X-GHP 24 MX	438945	24	25.8	3.0
X-GN 20 MX	340232	19	20.9	3.0
X-GN 27 MX	340230	27	28.9	3.0
X-GN 32 MX	340233	32	33.9	3.0
X-GN 39 MX	340234	39	40.9	2.6

Tool and gas can

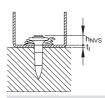
Designation


GX 120 / GX 120 ME	with gas can GC 21 and GC 22
GX 100 / GX 100 E	with gas can GC 11 and GC 12 (for USA)


Fastening quality assurance

Fastening inspection

Fastening to concrete / sandlime masonry

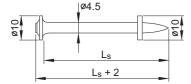


X-GN/GHP: h_{NVS} = 2-5 mm

X-GN 39: h_{CS} = 2-3 mm

Fastening to steel

X-EGN 14: h_{NVS} = 4-7 mm



DS Heavy Duty General Purpose Nails for Concrete and Steel

Product data

Dimensions

DS __ P10

General information

Material specifications

Carbon steel shank: HRC 54 (DS)

HRC 58 (DSH)

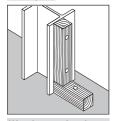
Zinc coating: 5–13 μm

Fastening tools

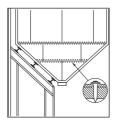
DX 460, DX 76, DX 76 PTR

See fastener selection for more details.

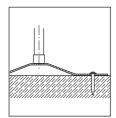
Approvals

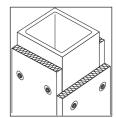

ICC (USA)

Note:


Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications


Examples


Wood to steel and concrete

Plastic and rubber to steel

Metal parts to concrete

Soft material to steel and concrete

Load data

Design data

Recommended loads

Fastening wood to concrete, sandlime masonry or steel

Fastening wood to concrete, sandlime masonry:

$$N_{rec} = V_{rec} = 0.4 \text{ kN}$$

Fastening wood to steel:

$$N_{rec} = V_{rec} = 0.6 \text{ kN}$$

Design conditions:

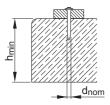
- For safety-relevant fastenings sufficient redundancy of the entire system is required: minimum 5 fastenings per fastened unit with normal weight concrete base material.
- All visible failures must be replaced.
- Valid for concrete and sandlime masonry with strength of fcc < 40 N/mm².
- Fastened material: wood, minimum thickness = 24 mm plywood, minimum thickness = 16 mm

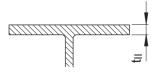
Soft material:

- Working loads depend on strength and thickness of material fastened. Do not use working loads in excess of those for wood.
- Depth of penetration and other conditions same as for fastening wood.
- Use R23 or R36 (Ø 4.5 mm hole) washer to control penetration and to increase pull-over strength. Separately available from Hilti.

Metal profiles to concrete:

- $N_{rec} = V_{rec} = 0.4 \text{ kN}$
- Minimum 5 fastenings per fastened unit (normal weight concrete)
- Increase to 600 N possible if 8 or more fastenings in each fastened unit.
- All visible failures must be replaced
- $t_1 = 1-4 \text{ mm}$


Test data


For more detailed information on the performance of the system please contact Hilti.

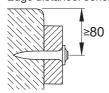
Application requirements

Thickness of base material

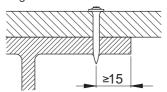
Concrete

 $h_{min} = 100 \text{ mm} (d_{nom} \ge 4.5 \text{ mm})$

Steel

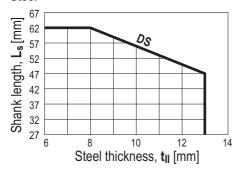

 $t_{II} \ge 6 mm$

Thickness of fastened material


 $t_1 \le 50.0 \text{ mm}$

Spacing and edge distances (mm)

Edge distance: concrete


Corrosion information

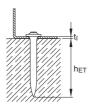
The intended use for safety-relevant and permanent applications only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles** and **Technique** section.

Application limits

Steel

Fastener selection

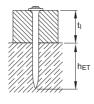
Fastening to concrete

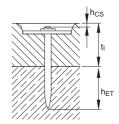

Required nail shank length:

Wood or

metal profiles
$$L_S = h_{ET} + t_l$$
 [mm]

Soft material $L_S = h_{ET} + t_I - 2 - h_{cs}$ [mm]


h_{CS} ≈ 3 mm if possible



Required depth of penetration hET

Select heT

hET ≥ 27 mm

Fastening to steel

$$h_{ET} = 17-27 \text{ mm}$$

System recommendation

Fasteners				Tool ¹)
Designation	Item no.	L _S [mm]	d _{nom} [mm]	Designation
DS 27 P10	46157	27	4.5	DX 460, DX 76, DX 76 PTR
DS 32 P10	46158	32	4.5	DX 460, DX 76, DX 76 PTR
DS 37 P10	46159	37	4.5	DX 460, DX 76, DX 76 PTR
DS 42 P10	46160	42	4.5	DX 460, DX 76, DX 76 PTR
DS 47 P10	46161	47	4.5	DX 460, DX 76, DX 76 PTR
DS 52 P10	46162	52	4.5	DX 460, DX 76, DX 76 PTR
DSH 57 P10	40591	57	4.5	DX 460, DX 76, DX 76 PTR
DS 62 P10	46164	62	4.5	DX 460, DX 76, DX 76 PTR
DS 72 P10	46165	72	4.5	DX 460, DX 76, DX 76 PTR

¹⁾ Nail length limits are for use without pre-driving into the wood. Hand-driving the nail into the wood and bringing the DX tool into position over the nail head extend the nail length range for the tools.

Cartridge selection and tool energy setting

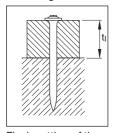
Cartridge recommendation: DX 460

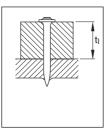
Steel: 6.8/11M red cartridge

Concrete: 6.8/11M yellow or red cartridge

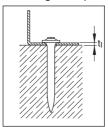
Masonry: 6.8/11M green cartridge

Cartridge recommendation: DX 76, DX 76 PTR


Steel: 6.8/18M red or black cartridge
Concrete: 6.8/11M yellow or red cartridge


Tool energy adjustment by setting tests on site.

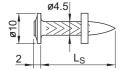
Fastening quality assurance


Fastening inspection

Fastening wood or soft material

Fastening metal profiles

Flush setting of the nails



EDS Nails for Fastening Steel to Steel

Product data

Dimensions

EDS_P10

General information

Material specifications

Carbon steel shank:

EDS 19/22 HRC 55.0 EDS 27 HRC 53.5 Zinc coating: 5–13 μm

Fastening tools

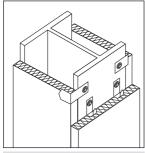
DX 76, DX 76 PTR

See fastener selection for more details.

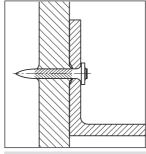
Approvals

ICC (USA)

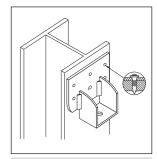
ABS & LR



Note:


Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications


Example

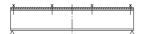
Metal clips

Angle bracket

Mounting bracket

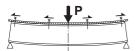
Load data

Recommended loads (predominantly static)

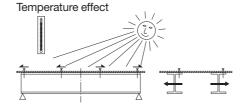

Steel sheet fastening

	EDS _ P10)
t _i [mm]	N _{rec} [kN]	V _{rec} [kN]
0.75	1.1	1.5
1.00	1.3	2.3
1.25	1.7	3.2
≥ 2.00	2.4	4.0

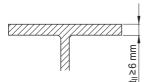
- Recommended loads valid for steel sheet with minimum tensile strength ≥ 360 N/mm².
- For intermediate sheet thicknesses, use recommended load for next smaller thickness.
- N_{rec} and V_{rec} include an overall safety factor of 3.0 applied to the characteristic test data.
 Static test: N_{rec} = N_{test,k} / 3.0, V_{rec} = V_{test,k} / 3.0


Forces of constraint

When fastening large pieces of steel, the possibility of shear loadings from forces of constraint should be considered. Avoid exceeding \mathbf{V}_{rec} for the fastener shank!

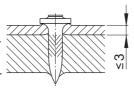


Deflection due to primary loading



Application requirements

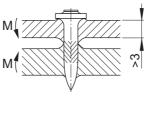
Thickness of base material



	t _{II} (mm)
EDS	≥6

Thickness of fastened material

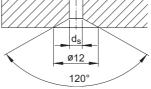
 $t_l \le 3 \text{ mm}$


Steel fastened material ≤ 3 mm thick, usually deforms with the displaced base material to allow a tight fit between fastened steel and base material without pre-drilling.

Because conditions may vary, trial fastenings are recommended

$t_l > 3 \text{ mm}$

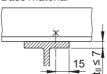
Without pre-drilling: steel fastened material > 3 mm thick is too stiff to deform entirely with the displaced base material. The gap, which increases with increasing t_I, can result in bending moments being applied to the nail shank.

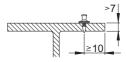


To prevent imposition of a moment on the shank of fastener, use three fasteners in a group.

With pre-drilling:

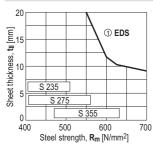
If a gap between the fastened part and the base material is unacceptable, the fastened part can be prepared with drilled holes.




Spacing and edge distances (mm)

Base material

Fastened material



Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

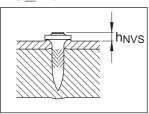
1) EDS with DX76 and DX 76 PTR

- Limit line valid for steel, $t_l \le 3 \text{ mm}$
- For steel t_I > 3 mm and without pre-drilling, either make trial fastenings or adjust t_{II} to t_{II} + t_I before using the chart.

Fastener selection														
Base material thickness	Fix ≤1		mate 3	erial 5	thic	kne 7	ess 1 8	t _i [m	m] 13	Fastener	Item no.	L _s [mm]	h _{ET} [mm]	DX tools
t _{II,min} ≥ 6 mm										EDS 19 P10	46554	19	12-17	DV 76
										EDS 22 P10	46556	22	12-17	DX 76, DX 76 PTR
										EDS 27 P10	46557	27	12-17	DX701 III
recommended thickness					$L_s = h_{ET} + t_l$									

Cartridge recommendation

Tool energy adjustment by setting tests on site


Fastener Cartridge selection and tool energy setting

EDS Cartridge recommendation: **6.8/18M red or black**

Fastening quality assurance

Fastening inspection

EDS __ P10

 $h_{NVS} = 3.0-4.0 \text{ mm}$

X-CR Stainless Steel Nails for Fastening to Steel

Product data

Dimensions

X-CR 14 D12

X-CR __ S12

General information

Material specifications

Nail shank: CR-500 (CrNiMo alloy) $f_u \ge 1850 \text{ N/mm}^2$ Steel washers: X2CrNiMo 18143 Plastic washers: polyethylene

Fastening tools

DX 460. DX 450

See fastener selection for more details.

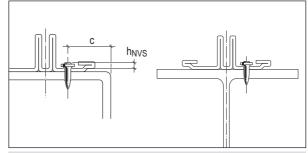
Approvals

X-CR 14 P8 DIBt (Germany):

fastening of glas facades

with DX 450 (125%)

ABS. LR: all types



Applications (for fastenings exposed to weather or other corrosive conditions)

Examples

Wall ties

Fastening of glas facades

2.85 8/2011

Load data

Recommended loads

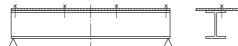
Steel sheet fastening

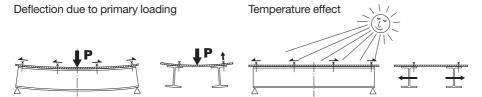
Carbon steel sheet, f _u ≥ 370 N/mm ²				Aluminium sheet, f _u ≥ 210 N/mm ²					
	X-CR _ F	28	X-CR _ C)12/S12	X-CR _ P8 X-CR _ D12/S12)12/S12
tı [mm]	N _{rec} [kN]	V _{rec} [kN]	N _{rec} [kN]	V _{rec} [kN]	tı [mm]	N _{rec} [kN]	V _{rec} [kN]	N _{rec} [kN]	V _{rec} [kN]
0.75	1.0	1.1	1.4	1.1	0.8	0.4	0.4	0.6	0.4
1.00	1.2	1.4	1.6	1.4	1.0	0.6	0.6	0.8	0.6
1.25	1.5	1.7	1.8	1.7	1.2	0.8	0.9	1.1	0.9
2.00	2.2	2.0	2.2	2.0	1.5	1.1	1.4	1.6	1.4
					2.0	1.6	1.7	1.9	1.7

- Recommended working loads valid for fastened materials as shown above.
- For intermediate sheet thicknesses, use recommended load for next smaller thickness.
- For stainless steel sheet, use same loads as for carbon steel sheet.
- Recommended loads include an overall safety factor applied to the characteristic strength.
 Static test: N_{rec} = N_{test.k} / 3.0 V_{rec} = V_{test.k} / 3.0
- These recommended loads are appropriate for Eurocode 1 (or similar) wind loading designs.

Other applications*

X-CR _ P8 / X-CR 14 D12 / X-CR _ S12


 $\textbf{N}_{\text{rec}} \left[\text{kN} \right] \quad \textbf{V}_{\text{rec}} \left[\text{kN} \right] \quad \textbf{M}_{\text{rec}} \left[\text{kN} \right]$


1.6 2.0 3.8

- * Fastened parts: thicker steel components (clips, brackets, etc.)
- Failure of fastened material is not considered in Nrec and Vrec.
- · Loads valid for predominantly static loading.

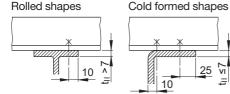
Forces of constraint

When fastening large pieces of steel or aluminium, the possibility of shear loadings from forces of constraint should be considered in the fastening design. Either allow for movement or avoid exceeding \mathbf{V}_{rec} !

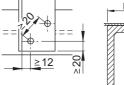
Application requirements

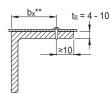
Thickness of base material

Using **DX 450** tool: t_{II} ≥ 5.0 mm ¹⁾


Using DX 460 tool: t_{||} ≥ 6.0 mm

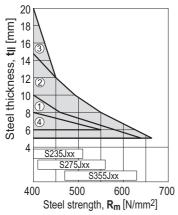
 $^{1)}$ t_{II} \geq 4 mm possible for specific types of hollow sections


Thickness of fastened material


t_l ≤ 12.0 mm (details see fastener selection)

Spacing and edge distances (mm)

^{**} max. allowable b_x ≤ 8 x t_{II} (however, jobsite trails advisable)


Corrosion information

For fastenings exposed to weather or other corrosive conditions. Not for use in highly corrosive surroundings like swimming pools or highway tunnels.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

DX 450, DX 460

- ① **X-CR16** ($t_l \le 3$ mm) with DX 450 tool
- ② **X-CR14** ($t_1 \le 2$ mm) with DX 450 tool
- ③ **X-CR14** ($t_{I} \le 1 \text{ mm}$) with DX 450 tool
- **④ X-CR14** (t_{I} ≤ 1 mm) with DX 460 tool

DX 450: Steel thickness $t_{||} \ge 5$ mm **DX 460:** Steel thickness $t_{||} \ge 6$ mm

Fastener selection

Program

Fastening of steel sheets

Fixe ≤1	aterial thickness t l [mm] 3	Fastener Designation	Item no.	L _s [mm]	h _{ET} [mm]	Tool
		X-CR 14 P8	306701	14	≥ 9	DX 450, DX 460
		X-CR 16 P8	247356	16	≥ 9	DX 450, DX 460
		X-CR 14 D12	244601	14	≥ 9	DX 450
		X-CR 16 S12	298855	16	≥ 9	DX 450

Fastening of wood or soft material

Fixe ≤4	ateria 6	al thio	ckne: 9	ss t _l [mm] 11	Fastener Designation	Item no.	L _s [mm]	h _{ET} [mm]	Tool
					X-CR 18 P8	247357	18	≥ 9	DX 450, DX 460
					X-CR 21 P8	247358	21	≥ 9	DX 450, DX 460
					X-CR 18 S12	298856	18	≥ 9	DX 450
					X-CR 21 S12	298857	21	≥ 9	DX 450
					X-CR 24 S12	298858	24	≥ 9	DX 450
_							_		

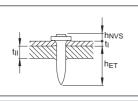
 \blacksquare = recommended thickness $L_s = h_{ET} + t_l$ for X-CR $_$ P8

 $L_s = h_{ET} + t_I + 1$ for X-CR __D12/S12

Cartridge recommendation

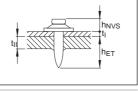
DX 460 6.8/11M red or black cartridge

DX 450 **6.8/11M yellow cartridge** ($t_{||} \ge 5-6 \text{ mm}$)

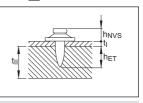

6.8/11M red cartridge (t_{||} > 6 mm)

Tool energy adjustment by setting tests on site.

Fastening quality assurance


Fastening inspection

X-CR P8

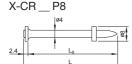

 $h_{NVS} = 3.0-4.5 \text{ mm}$

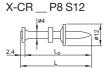
X-CR 14 D12

 $h_{NVS} = 4-5 \text{ mm}$

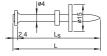
X-CR __ S12

 $h_{NVS} = 4-5 \text{ mm}$




X-CR Stainless Steel Nails for Concrete, **Sand lime Masonry and Steel**

Product data


Dimensions

X-CR 48 P8 S15

General information

Material specifications

Nail shank: CrNiMo Alloy $f_u \ge 1850 \text{ N/mm}^2$ (49 HRC)

Zinc coating: X-CR 48 P8S15 has 5-13 µm

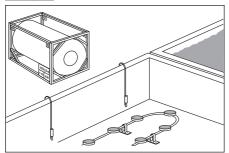
Zinc coating to improve anchorage in concrete

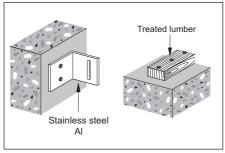
Fastening tools

DX 460, DX 36, DX-E72

See fastener selection for more details.

Approvals


DIBt (Germany): X-CR 48 P8 S15 ICC (USA): X-CR with $d_{nom} = 3.7 \text{ mm}$ ABS. LR: all types



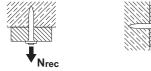
Applications

Examples

Exposure to weather or otherwise corrosive conditions

Noble or corrosive fastened material

2.89 8/2010



Load data

Design data

DX Standard: Recommended loads

Fastening wood to concrete, sandlime masonry or steel

Fastening wood to concrete, sandlime masonry:

$$N_{rec} = V_{rec} = 0.4 \text{ kN}$$

Fastening wood to steel:

$$N_{rec} = V_{rec} = 0.6 \text{ kN}$$

Design conditions:

- For safety relevant fastenings sufficient redundancy of the entire system is required: minimum 5 fastenings per fastened unit with normal weight concrete base material.
- All visible failures must be replaced.
- Valid for concrete and sandlime masonry with strength of fcc < 40 N/mm².
- Valid for predominantly static loading.

Soft material:

- Working loads depend on strength and thickness of material fastened. Do not use working loads in excess of those for wood.
- Depth penetration and other conditions same as for fastening wood
- Use R23 or R36 (Ø 4.5 mm hole) washer to control penetration and to increase pull-over strength. Separately available from Hilti.

DX-Kwik (with pre-drilling): Recommended loads

	N _{rec,1} [kN]	N _{rec,2} [kN]	V _{rec} [kN]	M _{rec} [Nm]
X-CR 39/44	2.0	0.6	2.0	5.5
X-CR 48	3.0	0.9	3.0	5.5

Conditions:

- N_{rec,1}: concrete in compressive zone.
- N_{rec.2}: concrete in tension zone.
- Static or cyclic (5000 load applications) loading.
- f_{cc} ≥ 25 N/mm². For higher concrete strengths, higher loadings may be possible if supported by testing.
- A sufficient redundancy has to be ensured, that the failure of a single fastening will not lead to collapse of the entire system.
- Recommended loads are based on failure of the fastener anchorage in the concrete.
 Thickness and quality of the fastened material may lower the loadings.
- Observance of all pre-drilling requirements, fastened thickness limits, and recommended details.

Test data

<u>Important note:</u> test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases.

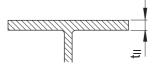
Design data for Hilti DX-standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual.

For more detailed information please contact Hilti.

DX Standard:

Pull-out loads in uncracked concrete

	Mean ultimate	Variation	Embedment	Concrete
	pull-out loads	coefficient	depth	strength
Nails	$N_{u,m}$ [kN]	[%]	h _{ET} [mm]	f _{cc} [N/mm ²]
X-CR	4.16	~45	30	47.1


Pull-over loads (Characteristic values: 5% fractile value)

Full-over loads (Characteristic values, 370 fractile value)							
	Softwood	Hardwood	1.0 mm	0,75 mm			
	(spruce)	(beech,	Aluminium	Steel			
		pre-drilled)	sheeting	sheeting			
Nail	N _{test,k} [kN]	N _{test,k} [kN]	N _{test,k} [kN]	N _{test,k} [kN]			
X-CR	3.2	5.2	1.4	3.0			

Application requirements

Thickness of base material

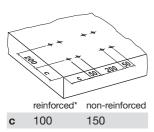
Concrete

$h_{min} = 80 \text{ mm } (d_{nom} = 3.7 \text{ mm})$	
$h_{min} = 90 \text{ mm } (d_{nom} \ge 4.0 \text{ mm})$	

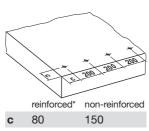
Steel

t_{II} ≥ 5 mm for fastening of wood

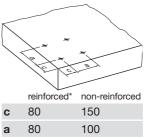
Thickness of fastened material


t_I ≤ 25.0 mm (detailed information see fastener selection)

8/2010 2.91

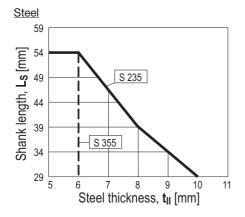


Spacing and edge distances (mm)


Pairs

Row along edge

General (e.g. group of fasteners)


^{*} Minimum Ø 6 mm reinforcing steel continuous along all edges and around all corners. Edge bar must be enclosed by stirrups.

Corrosion information

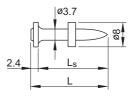
For fastenings exposed to weather or other corrosive conditions. Not for use in highly corrosive surroundings like swimming pools or highway tunnels.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

Fastener selection

Fastener selection:


DX Standard - fastening wood or soft material

Required nail shank length

Wood: $L_S = h_{ET} + t_I [mm]$

Soft material: $L_S = h_{ET} + t_l - 2.4 - h_{cs}$ [mm]

h_{CS} ≈ 3 mm if possible

Required depth of penetration hET

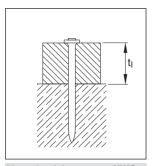
Normal weight concrete NWC

her according to concrete strength fcc

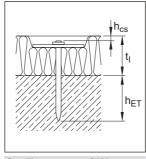
fcc	[N/mm ²]	15	25	35
hET	[mm]	32	27	22

Light weight concrete LWC:

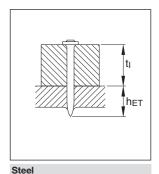
 $h_{ET} = 32-37 \text{ mm}$


Sandlime masonry SLM

 h_{ET} according to concrete strength f_{cc}


fcc	[N/mm ²]	15	25	35
hET	[mm]	32	27	27

Steel


hET ≥ 10 mm

Normal weight concrete NWC

Sandlime masonry SLM

8/2010 2.93

System	recommend	ation

Fasteners				Tool
Designation	Item no	L _S [mm]	d _{nom} [mm]	Designation
X-CR 24 P8	247359	24	3.7	DX 460, DX 36, DX-E 72 1)
X-CR 29 P8	247360	29	3.7	DX 460, DX 36, DX-E 72 1)
X-CR 34 P8	247361	34	3.7	DX 460, DX 36, DX-E 72 1)
X-CR 39 P8	247362	39	4.0	DX 460, DX 36, DX-E 72 1)
X-CR 44 P8	247363	44	4.0	DX 460, DX 36, DX-E 72 1)
X-CR 54 P8	247429	54	4.0	DX 460, DX 36, DX-E 72 1)
X-CR 39 P8 S12	247354	39	4.0	DX 460, DX 36 ²)
X-CR 44 P8 S12	247355	44	4.0	DX 460, DX 36 ²)
X-CR 48 P8 S15	258121	48	4.0	DX 460, DX 36 ²)

Method: 1) DX Standard (without pre-drilling)

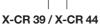
Cartridge selection

DX Standard

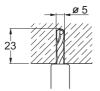
Steel:	6.8/11M yellow, red or black cartridge
Concrete:	6.8/11M yellow or red cartridge
Masonry:	6.8/11M green cartridge
DX-Kwik	
Concrete:	6.8/11M yellow or red cartridge

Tool energy adjustment by setting tests on site.

²⁾ DX-Kwik (with pre-drilling)

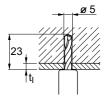


Installation instruction


DX-Kwik

Pre-drilling details (not through fastened material)

Fastener	t _i [mm]	Drill bit	Item no
X-CR 39	≤2	TX-C-5/18	291474
X-CR 44	2-7	TX-C-5/18	



X-CR 48

Fastener	t _i [mm]	Drill bit	Item no
X-CR 48	≤5	TX-C-5/23	291934

Details valid for C20/25 – C45/55 (f_{cc} = 25–55 N/mm² / f_{c} = 20–45 N/mm²)

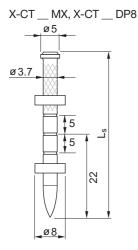
Pre-drilling details (through fastened material)

X-CR 48

X-CR 48	≤2	TX-C-5/23	291934
Fastener	t _i [mm]	Drill bit	Item no

Details valid for C20/25 – C45/55 (f_{cc} = 25–55 N/mm² / f_{c} = 20–45 N/mm²)

8/2010 2.95



X-CT Nails for Forming or other Temporary uses

Product data

Dimensions

General information

Material specifications

Carbon steel shank: HRC 53
Zinc coating: 5–13 μm

Fastening tools

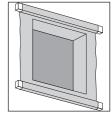
DX 460-F8, DX 460 MX, DX 36, DX E-72

See fastener selection for more details.

Applications

Examples

Conventional Formwork


8/2011

System Formwork

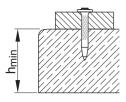
To position and hold concrete formwork

Fasten plastic, netting,

Load data

Design data

Recommended loads


 $V_{rec} = 0.3 \text{ kN for h}_{ET} \ge 22 \text{ mm}$

Conditions:

- Static loading only (placing and vibration of concrete does not affect design).
- Minimum 5 fastenings per fastened unit.

Application requirements

Thickness of base material

Concrete

 $h_{min} = 80 \text{ mm}$

Thickness of fastened material

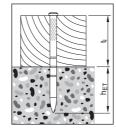
 $t_1 = 20-50 \text{ mm}$

Edge distances [mm]

c ≥ 70 mm

Fastener selection and system recommendation

Fastener selection


Required nail shank length:

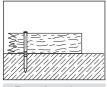
$$L_S = h_{ET} + t_I [mm]$$

Recommendation:

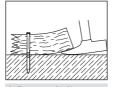
Concrete

 $h_{ET} = 22 \text{ mm}$

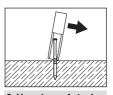
Fastener selection and system recommendation

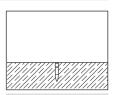

Fasteners						ols	•		
					ĕ	82			
Designation	Item no. Packs of 1000 nails	100 nails	Ls [mm]	d _{nom} [mm]	DX 460	DX 460	DX 36	DX E72	Key applications
X-CT 47 MX	383588		47	3.7					Wood to concrete
X-CT 52 MX	383589	383576	52	3.7					Wood to concrete
X-CT 62 MX	383591	383579	62	3.7					Wood to concrete
X-CT 72 MX		383580	62	3.7					Wood to concrete
X-CT 47 DP8		383582	47	3.7					Wood to concrete
X-CT 52 DP8		383583	52	3.7					Wood to concrete
X-CT 62 DP8		383585	62	3.7					Wood to concrete
X-CT 72 DP8		383586	72	3.7					Wood to concrete
X-CT 97 DP8		383587	97	3.7					Wood to concrete

MX: collated nails for magazine recommended


Cartridge recommendation:

Green concrete: 6.8/11M green
Normal concrete: 6.8/11M yellow


Removal instruction

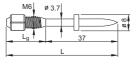

1. Fastening using proper nail length

2. Pry wood off over head of nail

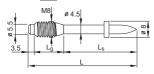
3. Use piece of steel pipe with inner diameter of 10 mm) to break off nail

4. Nail is broken off at grade with minimum concrete damage.

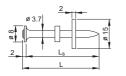
2.100 8/2011

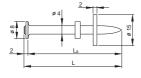


DX-Kwik X-M6H, X-M8H Threaded Studs and DNH, X-DKH Nails


Product data

Dimensions


X-M6H- -37 FP8


X-M8H -37 P8

DNH 37 P8S15

X-DKH 48 P8S15

General information

Material specifications

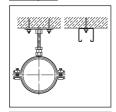
Carbon steel shank:	HRC 58
Zinc coating:	5–13 μm

Fastening tools

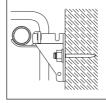
DX 460, DX 36

See fastener selection for more details.

Approvals

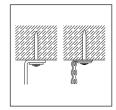

DIBt (Germany):	X-M8H, X-DKH
SOCOTEC (France):	X-M8H, DNH,
	X-DKH (with X-CC, X-HS)
City of Vienna:	X-M6H X-M8H DNH

Note:


Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples

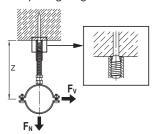

Base plates, rails for piping

Radiator brackets

Floor stands, metal fixtures to concrete

Suspended ceilings

Load data


Recommended loads

	N _{rec,1} [kN]	N _{rec,2} [kN]	v _{rec,1} [kN]	M _{rec,1} [Nm]
X-M6H, DNH 37	2.0	0.6	2.0	5.5
X-M8H, X-DKH 48	3.0	0.9	3.0	10.0

Conditions

- N_{rec,1}: concrete in compressive zone.
- Nrec.2: concrete in tension zone.
- · Predominantly static loading.
- Concrete C20/25-C50/60.
- A sufficient redundancy has to be ensured, that the failure of a single fastening will not lead to collapse of the entire system.
- Recommended loads are based on failure of the fastener anchorage in the concrete. Thickness and quality of the fastened material may lower the loadings.
 - Observance of all pre-drilling requirements, fastened thickness limits, and recommended details.
 - The recommended loads in the table refer to the resistance of the individual fastening and may not be the same as the loads F_N and F_V acting on the fastened part.
 - Note: If relevant, prying forces need to be considered in design, see example. Moment acting on fastener shank only in case of a gap between base and fastened material.

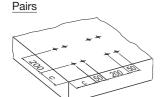
Arrangements to prevent moment on shank: Coupler tight against concrete

Non-symmetric arrangement

Application requirements

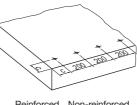
Thickness of base material

X-M6H, DNH 37: h_{min} = 100 mm X-M8H, X-DKH 48: h_{min} = 100 mm


Thickness of fastened material

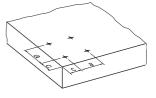
X-M6H: $t_{I} \leq L_{g} - t_{washer} - t_{nut} \cong up \text{ to } 13.5 \text{ mm}$ X-M8H: $t_{I} \leq L_{g} - t_{washer} - t_{nut} \cong up \text{ to } 14.0 \text{ mm}$

DNH 37: $t_1 \le 2.0 \text{ mm}$


X-DKH 48: $t_1 \le 5.0$ mm or $t_1 \le 2.0$ by pre-drilling through fastened material

Spacing and edge distances (mm)

Reinforced Non-reinforced
c 100 150


Row along edge

Reinforced Non-reinforced

80 150

General (e.g. group of fasteners

	Reinforced	Non-reinforced
С	80	150
а	80	100

Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Fastener selection and system recommendation

Fastened thickness	Fastener				
t _{I,max} [mm]	Designation	Item no.	L _g [mm]	L _s [mm]	L [mm]
-	X-M6H-10-37 FP8	40464	10	37	47
13.5	X-M6H-20-37 FP8	40465	20	37	57
-	X-M8H-10-37 P8	20059	10	37	50.5
5.0	X-M8H/5-15-37 P8	26325	15	37	55.5
15.0	X-M8H/15-25-37 P8	20064	25	37	65.5
2.0	DNH 37 P8S15	44165	-	37	39
5.0*	X-DKH 48 P8S15	40514	_	48	50

^{*)} with pre-drilling through fastened material t_{I,max} = 2.0 mm

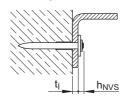
Tools, cartridge selection and tool energy setting

Designation

DX 460, DX 36: 6.8/11M yellow or red cartridge

Tool energy adjustment by setting tests on site.

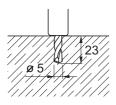
Fastening quality assurance


Fastening inspection

X-M6H, X-M8H

 $h_{NVS} = L - h_{ET}, h_{ET} = 37-41 \text{ mm}$

DNH 37, X-DKH 48


Place nails so that heads and washers bear tightly against each other and against the fastened material

 $h_{NVS} \cong 4 \text{ mm}$

Installation

X-M6H, X-M8H

Pre-drill with drill bit Designation Item no

TX-C-5/23B28557 or

TX-C-5/23 291934

Tightening torque
Designation Trec [Nm]

X-M6H 6.5

X-M8H 10.0

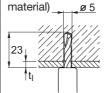
DNH 37, X-DKH 48

Pre-drilling details (not through fastened material)

 DNH 37 t₁ [mm]
 Drill-bit
 Item no.

 ≤ 2
 TX-C-5/18
 291474

 X-DKH 48 t₁ [mm]
 Drill-bit
 Item no.


 ≤ 5
 TX-C-5/23B
 28557

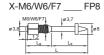
 or
 TX-C-5/23
 291934

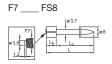
Details valid for C20/25-C50/60

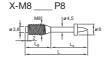
Pre-drilling details (through fastened

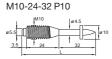
X-DKH 48 t₁ [mm] Drill-bit Item no. ≤ 2 only **TX-C-5/23** 291934

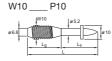
Details valid for C20/25-C50/60






X-M6, X-W6, X-F7, X-M8, M10, W10 Threaded Studs for Concrete


Product data


Dimensions

General information

Material specifications

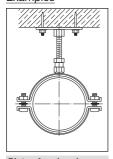
Carbon steel shank: HRC 53.5
Zinc coating: 5–13 µm

Fastening tools

DX 460, DX 351, DX 36, DX E72, DX 76, DX 76 PTR, DX 600 N

See fastener selection for more details.

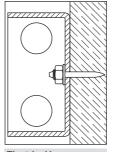
Approvals

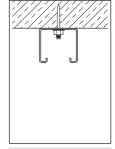

ICC (USA):	X-W6, W10
UL:	W10

Note:

Technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications


Examples


Plates for pipe rings

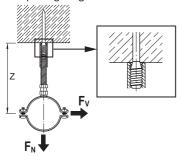
Hangings with threaded couplers

Electrical boxes

Miscellaneous attachments

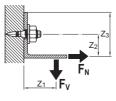
Load data

Design data


Recommended loads

Fastener designation	d _s [mm]	M _{rec} [Nm]
X-M6/W6, F7	3.7	5.0
X-M8, M10	4.5	9.0
W10	5.2	14.0

X-M6/W6, F7, X-M8, M10, W10


N _{rec} = V _{rec} =	0.4 kN for h _{ET} ≥ 27 mm
$N_{rec} = V_{rec} =$	0.3 kN for h _{ET} ≥ 22 mm
N _{rec} = V _{rec} =	0.2 kN for h _{ET} ≥ 18 mm

Arrangements to prevent moment on shank: Coupler tight against concrete

Non-symmetric arrangement

- Moment on fastened part
- Prying effect must be considered in determining loads acting on fastener

Conditions

- Minimum 5 fastenings per fastened unit (normal weight concrete)
- All visible failures must be replaced.
- With lightweight concrete base material and greater loading may be possible, please contact Hilti.
- Predominantly static loading.
- Observance of all application limitations and recommendations.
- ullet The recommended loads in the table refer to the resistance of the individual fastening and may not be the same as the loads F_N and F_V acting on the fastened part.

Note: If relevant, prying forces need to be considered in design, see example. Moment acting on fastener shank only in case of a gap between base and fastened material.

Test data

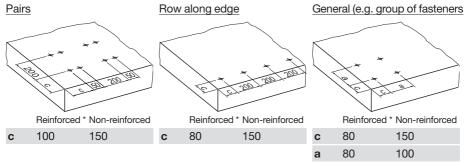
Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual. For more detailed information please contact Hilti.

Fastener designation	Pull-out load (mean ultimate) N _{u,m} [kN]	Embedment depth h ET [mm]	Variation coefficient [%]	Concrete strength at 28 days fcc [N/mm²]
X-M6-11-27 (DX 460)	4.37	26.3	42.8	24.9
	4.64	26.7	53.7	45.6
X-M8-15-27 (DX 460)	3.83	27.7	41.0	24.9
	4.00	26.8	57.8	45.6
W10-30-32 P10 (DX 600N)	8.18	33.2	28.6	45.6

Application requirements

Thickness of base material

Concrete


$$h_{min} = 80 \text{ mm } (d_{nom} = 3.7 \text{ mm})$$

 $h_{min} = 100 \text{ mm } (d_{nom} \ge 4.5 \text{ mm})$

Thickness of fastened material

M6:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 15 \text{ mm}$
W6:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 33 \text{ mm}$
F7:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 10 \text{ mm}$
M8:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 15 \text{ mm}$
M10:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 19 \text{ mm}$
W10:	$t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 25 \text{ mm}$

Spacing and edge distances (mm)

 $^{^*}$ Minimum \varnothing 6 reinforcing steel continuous along all edges and around all corners. Edge bars must be enclosed by stirrups.

Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Fastener selection and system recommendation

Fastener selection

Required thread length

L_g ≥ t_l + t_{washer} + t_{nut} [mm]

2.110 8/2011

Fastene	ers				Tool
			Standard threading ²)	Standard shank lengths 2)	
Group 1) [Designation	Item no.	L _g [mm]	Ls [mm]	Designation
M6 2	X-M6-11-22FP8	306076	11	22	DX 460, DX 351, DX 36, DX E72
2	X-M6-11-27FP8	306077	11	27	DX 460, DX 351, DX 36, DX E72
2	X-M6-20-22FP8	306078	20	22	DX 460, DX 351, DX 36, DX E72
2	X-M6-20-27FP8	306079	20	27	DX 460, DX 351, DX 36, DX E72
2	X-M6-8-17FP8	306080	8	17	DX 460, DX 351, DX 36, DX E72
2	X-M6-8-22FP8	306081	8	22	DX 460, DX 351, DX 36, DX E72
2	X-M6-8-27FP8	306082	8	27	DX 460, DX 351, DX 36, DX E72
2	X-M6-11-17FP8	306489	11	17	DX 460, DX 351, DX 36, DX E72
W6	X-W6-20-22FP8	306073	20	22	DX 460, DX 351, DX 36, DX E72
2	X-W6-20-27FP8	306074	20	27	DX 460, DX 351, DX 36, DX E72
2	X-W6-38-27FP8	306075	38	27	DX 460, DX 36, DX E72
2	X-W6-11-22FP8	306486	11	22	DX 460, DX 351, DX 36, DX E72
2	X-W6-11-27FP8	306487	11	27	DX 460, DX 351, DX 36, DX E72
F7 2	X-F7-7-22FS8	306089	7	22	DX 460, DX 351, DX 36, DX E72
2	X-F7-7-27FS8	306090	7	27	DX 460, DX 351, DX 36, DX E72
2	X-F7-15-27FS8	306493	15	27	DX 460, DX 351, DX 36, DX E72
M8 2	X-M8-15-27P8	306092	15	27	DX 460, DX 36, DX E72
2	X-M8-15-42P8	306094	15	42	DX 460, DX 36, DX E72
2	X-M8-20-32P8	306096	20	32	DX 460, DX 36, DX E72
M10 I	M10-24-32P10	26413	24	32	DX 76, DX 76 PTR
W10 \	W10-30-27P10	26472	30	27	DX 600 N
,	W10-30-32P10	26473	30	32	DX 600 N
1	W10-30-42P10	26476	30	42	DX 600 N

 $^{^{1}}$) Type threading: M = metric; W6, W10 = Whitworth 1/4"; 3/8"; F7 = French 7 mm

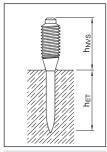
Cartridge selection

Cartridge recommendation:

M6, W6, F7, M8:	6.8/11M yellow or red cartridge
M10:	6.8/18M blue or red
W10:	6.8/18 yellow, red or black

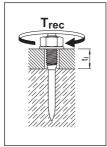
Tool energy adjustment by setting tests on site.

²⁾ Standard threading and shank lengths. Other lengths and combinations available on special order.



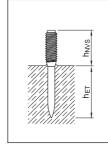
Fastening quality assurance

Fastening inspection


X-M6/W6/F7

Penetration depth

 $h_{ET} = L_s \pm 2$


Tightening torque

T_{rec} ≤ 4 Nm

X-M8, M10, W10

Penetration depth

 $h_{ET} = L_s \pm 2$

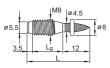
Tightening torque

T_{rec} ≤ 6 Nm

X-EM 6H, X-EW 6H, X-EF 7H, X-EM 8H, X-EM 10H, X-EW 10H Threaded Studs for Steel

Product data

M6/W61

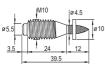

Dimensions

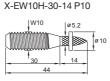
X-EM6H/EW6H- -9 FP8 X-EF7H-7-9 FP8

|ø3.7

1ø3.7

X-EM8H-__-12 P8




30.5

X-EM8H-15-12 FP10

IM8

X-EM10H-24-12 P10

For dimension details see chapter fastener selection

General information

Material specifications

Carbon steel shank: HRC 56.5 Zinc coating: 1) 5-13 µm

1) Zinc coating (electroplating for corrosion protection during construction and service in protected environment)

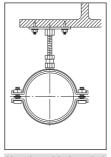
Fastening tools

DX 460, DX 76, DX 76 PTR, DX 600 N

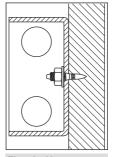
See fastener selection for more details.

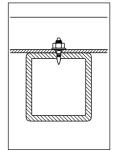
Approvals

ICC-ES ESR-2347 X-EW6H, X-EW10H, (USA): X-EM8H FM 3026695: X-EW6H, X-EW10H UL: EX2258: X-EW6H, X-EW10H ABS, LR: all types



Applications


Examples

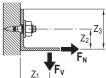

Base plates for pipe rings

Hanging with threaded couplers

Electrical boxes

Miscellaneous attachments

Load data

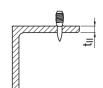

Recommended loads

Fastener designation	Shank d _s x L _s [mm]	N _{rec} [kN]	V _{rec} [kN]	M _{rec} [Nm]
X-EM6H, X-EW6H, X-EF7H	3.7 x 8.5	1.6	1.6	5.0
X-EM8H, X-EM10H	4.5 x 12.0	2.4	2.4	9.0
X-EW10H-30-14	5.2 x 15.0	3.0	3.0	14.0

Conditions

- Redundancy (multiple fastening) must be provided.
- Global factor of safety for static pull-out >3 (based on 5% fractile value).
- Predominantly static loading.
- Strength of fastened material must be considered.
- Observance of all application limitations and recommendations.
- The recommended loads in the table refer to the resistance of the individual fastening and may not be the same as the loads F_N and F_V acting on the fastened part.
 Note: If relevant, prying forces need to be considered in design, see example.
 Moment acting on fastener shank only in case of a gap between base and fastened material.

2.114 8/2011

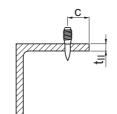


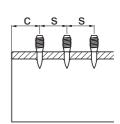
Application requirements

Thickness of base material

Minimum steel thickness:

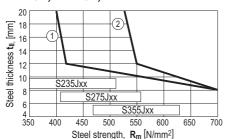
	ч
X-EM6H/EW6H, X-EF7H	≥ 4 mm
X-EM8H/EW8H, X-EM10H/EW10H	≥ 6 mm


Thickness of fastened material


$$t_l \le L_g - t_{washer} - t_{nut} \cong 1.5-33.0 \text{ mm}$$

Spacing and edge distances

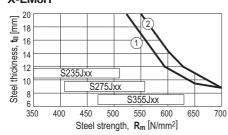
Edge distance and spacing: c = s ≥ 15 mm


Corrosion information

The intended use only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

X-EM6H, X-EW6H, X-EF7H

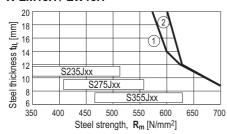


DX 460 tool:

① X-EF7H-__-9 ② X-EM6H-__9,

X-EW6H-__-9

X-EM8H


DX 460 tool:

① X-EM8H- -12

DX 76 / DX 76 PTR tool

with X-76-F10-PTR fastener guide:
② X-EM8H-15-12

X-EM10H / EW10H

DX 76 / DX 76 PTR tool:

① X-EM10H-24-12

DX 600 N tool:

2 X-EW10H-30-14 P10

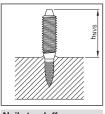
2.116 8/2011

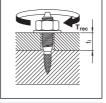
Fastener selection and system recommendation						
Base material thickness t _{II,min} [mm]	Fastened thickness t _{I,max} [mm]	Fastener Designation¹)	Item no.	Threading length L _g [mm]	Shank lengths L _s [mm]	DX tools
4.0	1.5	X-EM6H-8-9 FP8	271965	8	8.5	DX 460
	4.5	X-EM6H-11-9 FP8	271963	11	8.5	DX 460
	13.5	X-EM6H-20-9 FP8	271961	20	8.5	DX 460
	4.5	X-EW6H-11-9 FP8	271973	11	8.5	DX 460
	13.5	X-EW6H-20-9 FP8	271971	20	8.5	DX 460
	21.5	X-EW6H-28-9 FP8	271969	28	8.5	DX 460
	31.5	X-EW6H-38-9 FP8	271967	38	8.5	DX 460
	0.5	X-EF7H-7-9 FS8	271975	7	10	DX 460
6.0	2.0	X-EM8H-11-12 P8	271983	11	12	DX 460
	6.0	X-EM8H-15-12 P8	271981	15	12	DX 460
	6.0	X-EM8H-15-12 FP10	271982	15	12	DX 76 PTR, DX 460
	14.0	X-EM10H-24-12 P10	271984	24	12	DX 76 PTR, DX 460
	20.0	X-EW10H-30-14 P10	271985	30	14	DX 600 N

¹) Type of threading: $\mathbf{M} = \text{metric}$; $\mathbf{W6}$, $\mathbf{W10} = \text{Whitworth} \frac{1}{4}$; $\frac{3}{8}$; $\mathbf{F7} = \text{French 7 mm}$

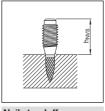
Cartridge recommendation

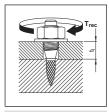
Tool energy adjustment by installation tests on site


Fastener	Cartridge selection	DX tool
X-EM6H, X-EW6H, X-EF7H	6.8/11M green or yellow cartridges	DX 460
X-EM8H	6.8/18M blue cartridges	DX 76,
		DX 76 PTR
	6.8/11M yellow, red or black cartridges	DX 460
X-EM10H	6.8/18M blue, red or black cartridges	DX 76,
		DX 76 PTR
	6.8/11M yellow, red or black cartridges	DX 460
X-EW10H	6.8/18 red or black cartridges	DX 600N



Fastening quality assurance


Fastening inspection

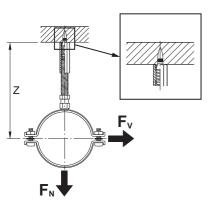

X-EM6H, X-EW6H, X-EF7H

X-EM8H, X-EM10H, X-EW10H

Nail standoff

Tightening torque

Nail standoff


Tightening torque

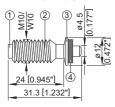
ivs nm]	T _{rec} [Nm]
3.0–11.0	≤4
9.5–12.5	≤4
3.5–21.5	≤4
6.5–29.5	≤4
6.5–39.5	≤4
9.0–12.0	≤ 4
	3.0–11.0 9.5–12.5 3.5–21.5 6.5–29.5 6.5–39.5

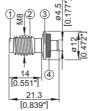
astener	h _{NVS} [mm]	T _{rec} [Nm]
X-EM8H-11-12	11.5–15.5	≤10.5
X-EM8H-15-12	15.5–19.5	≤10.5
X-EM10H-24-12	26.5–30.5	≤10.5
X-EW10H-30-14	28.0–31.0	≤15.0

Installation

Arrangement to prevent moment on shank: Coupler tight against steel

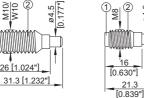
2.118 8/2011

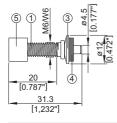



X-BT stainless steel threaded studs

Product data

Dimensions


X-BT W10-24-6 SN12-R X-BT M10-24-6 SN12-R X-BT M8-15-6 SN12-R



X-BT W10-24-6-R X-BT M10-24-6-R

X-BT M8-15-6-R

X-BT W6-24-6 SN12-R X-BT M6-24-6 SN12-R

General information

Material specifications

① Shank:

CR 500 (CrNiMo alloy) equivalent to A4 / S31803 (1.4462) AISI grade 316 material N 08926 (1.4529) 1 Available on request

2 Threaded sleeve: \$31600

(X2CrNiMo 17132)

③ SN12-R washers: S 31635

(X5CrNiMo 17-12-2+2H)

Sealing washers: Elastomer, black *

* Resistant to UV. salt water, water, ozone, oils, etc.

1) For High Corrosion Resistance HCR material inquire at Hilti

Designation according to Unified Numbering System (UNS)

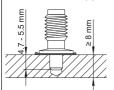
Fastening tool

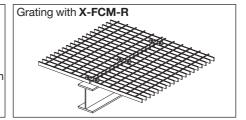
DX 351-BT / BTG

See fastener selection for more details.

Approvals

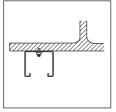
ICC ESR-2347 (USA), ABS, LR, UL, DNV

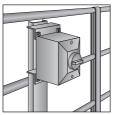


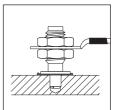

Applications

Examples

Threaded stud applications especially for:




- High strength steel Coated steel struc-
- Through penetration of base steel is not allowed



Base plates

Installation rails

Junction box, etc.

Earthing / Bonding

Load data

Recommended loads

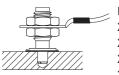
Steel grade: Europe, USA		S235, A36	S355, Grade 50 and stronger steel
Tension,	N _{rec} [kN/lb]	1.8 / 405	2.3 / 517
Shear,	V _{rec} [kN/lb]	2.6 / 584	3.4 / 764
Moment,	M _{rec} [Nm/lb]	8.2 / 6	8.2 / 6
Torque,	T _{rec} [Nm/lb]	8/5.9	8/5.9
Torque,	T _{rec} [Nm/lb]	8/5.9	8/5.9

Example:

Conditions for recommended loads:

- Global factor of safety for static pull-out > 3 (based on 5% fractile value)
- Minimum edge distance = 6 mm [1/4"].
- Effect of base metal vibration and stress considered.
- Redundancy (multiple fastening) must be provided.
- The recommended loads in the table refer to the resistance of the individual fastening and may not be the same as the loads F_N and F_V acting on the fastened part.
 Note: If relevant, prying forces need to be considered in design, see example. Moment acting on fastener shank only in case of a gap between base and fastened material.

Cyclic loading:


- Anchorage of X-BT-R threaded stud in steel base material is not affected by cyclic loading.
- Fatigue strength is governed by fracture of the shank. Inquire at Hilti for test data if high cycle loading has to be considered in the design.

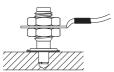
X-BT for fastenings of earthing and bonding device

Protective earthing circuits (According to EN 60439-1 and EN 60204-1)

Single point connection

Fasteners
X-BT M10-24-6 SN12-R,
X-BT W10-24-6 SN12-R,
X-BT M6-24-6 SN12-R,
X-BT W6-24-6 SN12-R

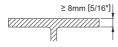
Maximum connected cable size ≤ 10 mm² Copper


AWG 8

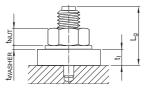
Double point connection

Fasteners X-BT M10-24-6 SN12-R, X-BT W10-24-6 SN12-R, X-BT M6-24-6 SN12-R, X-BT W6-24-6 SN12-R Maximum connected cable size ≤ 16 mm² Copper
AWG 6

External lightening protection systems (According to EN 50164-1)



Fasteners X-BT M10-24-6 SN12-R, X-BT W10-24-6 SN12-R, X-BT M6-24-6 SN12-R, X-BT W6-24-6 SN12-R Test class = N I_{max} = 50 kA Time = $t_d \le 2$ ms

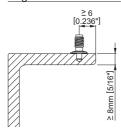

Test class = H $I_{max} = 100 \text{ kA}$ $Time = t_d \le 2 \text{ ms}$

Application requirements

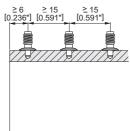
Thickness of base material

Thickness of fastened material

X-BT M8: $t_l \le L_g - t_{washer} - t_{nut} \le 7.0 \text{ mm}$ X-BT M10 / X-BT W10: $t_l \le L_g - t_{washer} - t_{nut} \le 15.0 \text{ mm}$ X-BT M6 / X-BT W6: $t_l \le L_g - t_{washer} - t_{nut} \le 14.0 \text{ mm}$


Note:

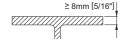
For X-BT with SN 12R sealing washer $t_l \ge 2.0$ mm For X-BT M6 / W6 with SN 12R sealing washer $t_l \ge 1.0$ mm



Spacing and edge distances

Edge distance: ≥ 6 mm

Spacing: ≥ 15 mm



Corrosion information

The corrosion resistance of Hilti CR500 and S31803 stainless steel material is equivalent to AISI 316 (A4) steel grade.

Studs made of N 08926 (HCR) material with higher corrosion resistance, e.g. for use in road tunnels or swimming pools, are available on special order.

Application limit

- $t_{||} \ge 8 \text{ mm} [5/16] \rightarrow \text{No through penetration}$
- No limits with regards to steel strength

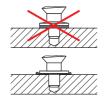
Fastener selection

Fasteners		Tool
Designation	Item no.	Designation
X-BT M8-15-6 SN12-R	377074	DX 351-BTG
X-BT M10-24-6 SN12-R	377078	DX 351-BT
X-BT W10-24-6 SN12-R	377076	DX 351-BT
X-BT M8 without washer	377073	DX 351-BTG
X-BT M10 without washer	377077	DX 351-BT
X-BT W10 without washer	377075	DX 351-BT
X-BT M6-24-6 SN12-R	432266	DX 351-BT
X-BT W6-24-6 SN12-R	432267	DX 351-BT

Note: For High Corrosion Resistance HCR material inquire at Hilti

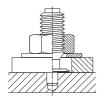
Cartridge selection and tool energy setting

6.8/11 M high precision brown cartridge


Fine adjustment by installation tests on site

Fastening quality assurance

Fastening inspection

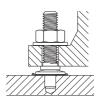


X-BT M8

 $h_{NVS} = 15.7-16.8 \text{ mm}$

X-BT M10 / X-BT W10 and X-BT M6 / X-BT W6 h_{NVS} = 25.7–26.8 mm

Installation X-BT with washer


Fastened material hole ∅ ≥ 13 mm

X-BT without washer

Fastened material hole ∅ ≥ 11 mm for X-BT M/W10 ≥ 9 mm for X-BT M8

X-BT M6 / X-BT W6

Fastened material with pre-drilled hole diameter < 7 mm

Fastened material with pre-drilled hole diameter ≥ 7 mm

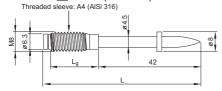
Mark location for each fastening	2. Pre-drill with TX-BT 4/7 step shank drill bit	3. Drive X-BT-R studs into drilled hole	4. Hang unit on studs. Put on washers and hand tighten nuts	5. Tighten using a screwdriver with torque clutch
	Pre-drill until the shoulder grinds a shiny ring (to ensure proper drilling depth)	Adjust power on DX 351 BT so that the fastener standoff h _{NVS} , is not greater than: h _{NVS} ≤ 26.8 mm (X-BT M/W10R, X-BT M/W6R) h _{NVS} ≤ 16.8 mm (X-BT M8R) + → - + + + + + + + + + + + + + + + + +	Sealing washer must be properly compressed!	Tightening torque: Trec ≤ 8 Nm (5.9 ft-lb)! Trec
	Before fastener installation: the drilled hole must be clear of liquids and debris. The area around the drilled hole must be free from liquids and debris.	NAVS.		Hilti Torque screwdriver: setting: SF 121-A 11 SF 150-A 9

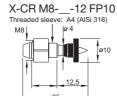
X-BT for fastenings of earthing and bonding device

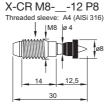
Hold the lower nut with a spanner whilst tightening the second nut.

The tightening torque can be in a range of about 20 Nm.

2.124 8/2011




X-CRM Stainless Steel Threaded Studs for Concrete and Steel


Product data

Dimensions

X-CR M8-__-42 P8 (DX-Kwik)

General information

Material specifications

Shank: CrNiMo alloy $f_u \ge 1850 \text{ N/mm}^2$ (49 HRC)

Threaded sleeve: A4 (AISI 316)

Zinc coating to facilitate anchoring in concrete

(X-CR M8-__-42): 5–13 μm

Washers/

guidance sleeve: polyethylene

Fastening tools

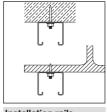
DX 460, DX 36, DX 76, DX 76 PTR

See fastener selection for more details.

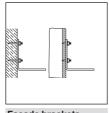
Approvals

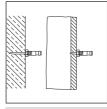
DIBt (Germany):	X-CR M842 P8
	(DX-Kwik)
ICC ESR-2347:	X-CR M8-9-12,
	X-CR M8-15-12
ABS, LR:	all types

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.



Applications


Examples



Installation rails

Special purpose connections

Load data

Design data

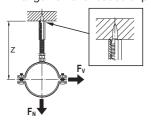
Recommended loads

Fastening to steel

	N _{rec} [kN]	V _{rec} [kN]	M _{rec} [Nm]	
X-CR M8	1.8	1.8	5.5	

Conditions:

• For safety-relevant fastenings sufficient redundancy of the entire system is required.


Fastening to concrete - DX-Kwik method (pre-drilling)

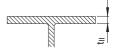
	N _{rec,1} [kN]	N _{rec,2} [kN]	V _{rec} [kN]	M _{rec} [Nm]
X-CR M842 P8	3.0	0.9	3.0	5.5

Conditions:

- N_{rec.1}: concrete in compressive zone
- N_{rec.2}: concrete in tension zone
- **f**_{cc} ≥ 20 N/mm²
- A sufficient redundancy has to be ensured, that the failure of a single fastening will not lead to collapse of the entire system.
- Observance of all pre-drilling requirements

Arrangements to reduce or prevent moment on shank:

Application requirements

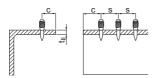

Thickness of base material

Concrete - DX-Kwik

 $h_{min} = 100 \text{ mm}$

Steel

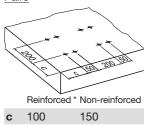
t_{II} ≥ 6 mm

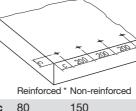

Thickness of fastened material

X-CR M8

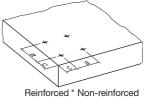
 $t_l \le L_g - t_{washer} - t_{nut} \cong up \text{ to } 13.0 \text{ mm}$

Spacing and edge distances (mm)


Fastening to steel


c. s ≥ 15 mm

Fastening to concrete



Row along edge

General (e.g. group of fasteners

c 80 150 **a** 80 100

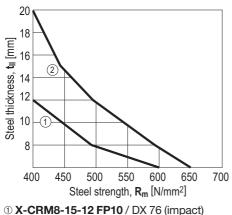
Corrosion information

For fastenings exposed to weather or other corrosive conditions. Not for use in highly corrosive surroundings like swimming pools or highway tunnels.

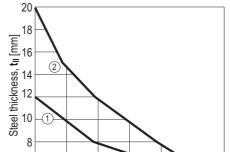
 $^{^*}$ Minimum \varnothing 6 reinforcing steel continuous along all edges and around all corners. Edge bars must be enclosed by stirrups

Application limits

Concrete:


No general restrictions existent. Limitations are dependent on application and user requirements.

DX 460


400

450

DX 76, DX 76 PTR

② X-CRM8-15-12 FP10 / DX 76 (co-acting)

① X-CRM8-15-12 P8 / DX 460 (impact)

500

2 X-CRM8-15-12 P8 / DX 460 (co-acting)

550

Steel strength, R_m [N/mm²]

600

650

700

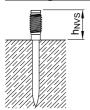
Fastener selection

Fastened thickness t _{I,max} [mm]		Item no.	Lg [mm]	L _s [mm]	Tools
	Base material concrete	, DX-Kwik	method		
5.0	X-CR M8-14-42 P8	255911	14	42	DX 460, DX 36
13.0	X-CR M8-22-42 P8	255910	22	42	DX 460, DX 36
	Base material steel				
6.0	X-CR M8-9-12 P8	372031	9	12.5	DX 460
6.0	X-CR M8-15-12 P8	372033	15	12.5	DX 460
6.0	X-CR M8-9-12 FP10	372032	9	12.5	DX 460, DX 76, DX 76 PTR
6.0	X-CR M8-15-12 FP10	372 034	15	12.5	DX 460, DX 76, DX 76 PTR

¹⁾ Type threading: M = metric; W6 = Whitworth 1/4"

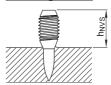
Cartridge selection and tool energy setting

Base material	Designation	Tool
Concrete	6.8/11M yellow or red cartridge	DX 460, DX 36
Steel	6.8/11M red cartridge	DX 460, DX 76, DX 76 PTR


Tool energy adjustment by setting tests on site.

Fastening quality assurance

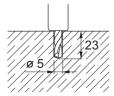
Fastening inspection


Fastening to concrete

DX-Kwik (pre-drilling)

Fastener	h _{NVS} [mm]
X-CR M8-14-42 P8	12.0 – 16.0
X-CR M8-22-42 P8	20.0 – 24.0

Fastening to steel

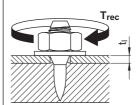


Fastener	h _{NVS} [mm]
X-CR M8-9-12 P8	12.0 – 15.0
X-CR M8-15-12 P8	17.0 – 20.0
X-CR M8-9-12 FP10	12.0 – 15.0
X-CR M8-15-12 FP10	17.0 – 20.0

Installation

Fastening to concrete

DX-Kwik (pre-drilling)
X-CR M8-__-42 P8

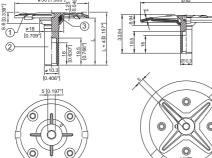


Pre-drill with drill bit TE-C-5/23B (Item-no. 28557) or TE-C-5/23 (Item-no. 291934)

Tightening torque T_{rec} = 10 Nm

Fastening to steel

2.130 8/2011


X-FCM Grating Fastening System

X-FCM-M L

Product data

Dimensions

X-FCM #50 [1 96

General information

Material specifications

See fastener selection for more details.

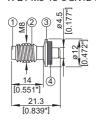
Fastening tool

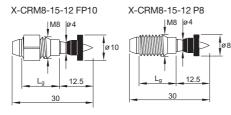
See fastener selection for more details.

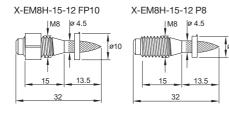
Approvals

ABS: X-FCM-R
GL, DNV: X-FCM-M, X-FCM-R
LR: all types
DNV

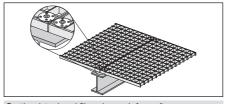
No approvals for X-FCM-M_L





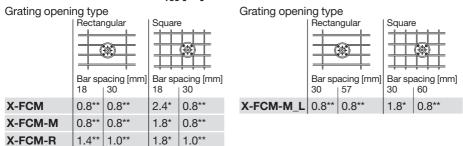


X-BT M8-15-6 SN12-R



Applications

Example



Grating (steel and fibreglass reinforced)

Load data

Recommended tensile loads N_{rec} [kN]

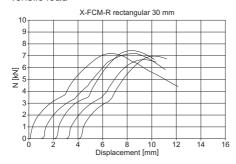
^{*} Loading is limited by recommended load for threaded stud.

Notes:

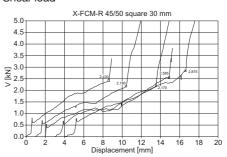
X-FCM, X-FCM-M, X-FCM-R, X-FCM-M_L resist shear by friction and are not suitable for explicit shear load designs, e.g. diaphragms. Depending on surface characteristics, shear loads of up to about 0.3 kN will not result in permanent deformation. Therefore small unexpected shear loads can generally be accommodated without damage.

Characteristic tensile loads N_{Rk}:

		X-FCM-R with		
Туре	Grating – bar spacing	X-BT S235 / A36 steel	> S355 / Grade 50 steel	X-CRM
士二士	Rectangle 18 mm	4.2 kN / 945 lb*	4.2 kN / 945 lb*	4.2 kN / 945 lb*
	Rectangle 30 mm	3.0 kN / 675 lb*	3.0 kN / 675 lb*	3.0 kN / 675 lb*
	Square 18 mm	5.4 kN / 1215 lb	6.9 kN / 1550 lb	5.4 kN / 1215 lb
	Square 30 mm	3.0 kN / 675 lb*	3.0 kN / 675 lb*	3.0 kN / 675 lb*
		* Landing in limited by	alaatia limit af tha V FC	M dian

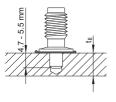

^{*} Loading is limited by elastic limit of the **X-FCM** disc.

^{**} Loading is limited by elastic limit of the **X-FCM** disk. Exceeding recommended loads can result in plastic deformation of disk.

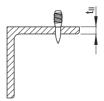


Load displacement behaviour - examples:

Tensile load


Shear load

Application requirements


Thickness of base material

 $t_{II} \ge 8 \text{ mm}$

X-CRM and X-EM8H

 $t_{II} \ge 6 \text{ mm}$

Thickness of fastened material

Grating height: 25–50 mm with standard X-FCM. For other dimensions special X-FCM are available on demand.

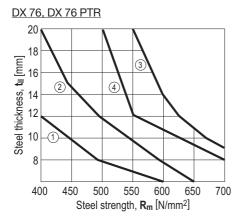
Spacing and edge distances

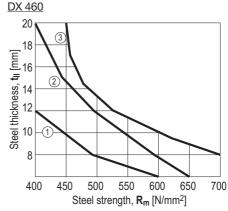
X-CRM, X-EM8H

Edge distances: $c \ge 15 \text{ mm}$ Spacing: $s \ge 15 \text{ mm}$

X-BT

Edge distance: $c \ge 6 \text{ mm}$ Spacing: $s \ge 15 \text{ mm}$





Corrosion information

The intended use of the **X-EM8H** carbon steel fasteners only comprises fastenings which are not directly exposed to external weather conditions or moist atmospheres. For outdoor applications **X-BT** or **X-CRM** stainless steel fasteners have to be used, see fastener selection.

Application limits

- ① **X-CRM8-15-12 FP10** / DX 76, DX 76 PTR (impact)
- ② X-CRM8-15-12 FP10 / DX 76, DX 76 PTR (co-acting)
- ③ X-EM8H-15-12 FP10 / DX 76, DX 76 PTR (impact)
- 4 X-EM8H-15-12 P8 / DX 76, DX 76 PTR (impact)

- ① **X-CRM8-15-12 P8** / DX 460 (impact)
- ② X-CRM8-15-12 P8 / DX 460 (co-acting)
- 3 X-EM8H-15-12 P8 / DX 460 (impact)

X-BT: No application limits → using in high strength steel No through penetration → t_{II} ≥8 mm [⁵/₁₅"]

Fastener selection and system recommendation

Application areas

Indoors, dry and non corrosive environment Indoors, mildly corrosive environment, or for limited lifetime use

| Marine, offshore, petrochemical, caloric (coal, oil) power plants, etc.

X-FCM system				I	Dimensions Grating		Tools	
X-FCM Zinc plated	Item no.	X-FCM-M Duplex coated	Item no.	X-FCM-R Stainless steel	Item no.	L [mm]	height [mm]	
X-FCM 25/30	26582	X-FCM-M 25/30	378683	X-FCM-R 25/30	247181	23	25–30	1)
X-FCM 1"-11/4"2	247175	X-FCM-M 1"-11/4"	378686	X-FCM-R 1"-11/4"	" 247184	27	29 –34	1)
X-FCM 35/40	26583	X-FCM-M 35/40	378684	X-FCM-R 35/40	247182	33	35–40	1)
X-FCM 45/50	26584	X-FCM-M 45/50	378685	X-FCM-R 45/50	247183	43	45 –50	1)
		X-FCM-M 1"-11/4" L	2042852*			27	29 –34	1)
		*For use only with X-BT M8-15-6 SN12	-R					
		Note: Not for use in marine atmosphere or in hea polluted environment	avily	Note: Not for use in auto tunnels, swimming similar environme	g pools or			

1) SF 100-A, SF 11-A, SF 150-A

Threaded studs Tools Item no.

X-EM8H-15-12 P8		271981	2)
X-EM8H-15-12 FP10		271982	2)
	X-BT M8-15-6 SN12-R	377074	³)
	X-CR M8-15-12 P8	372033	2)
	X-CR M8-15-12 FP10	372034	2)

²⁾ DX 76 PTR, DX 460

Cartridge selection and tool energy setting

X-BT X-CRM and X-EM8H

6.8/11M high precision cartridges **6.8/11M yellow or red** cartridges with DX 460

6.8/18M blue cartridges with DX 76 PTR

Tool energy adjustment by setting tests on site.

6/2012 2.135

³⁾ DX 351-BTG

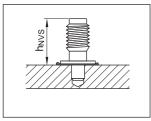
Material specifications and coatings

X-FCM system

	X-FCM-R		X-FCM-M+X-FCM-M_L		X-FCM	All systems	
	0	2	0	2	①	2	3
	Disk	Threaded stem	Disk	Threaded stem	Disk	Threaded stem	Absorber 1)
Material	X2CrNiMo18143	X2CrNiMo17132	DC 04	11SMNPB30+C	DC 04	11SMNPB30+C	Polyurethane
designation	X2CrNiMo17122	X6CrNiMoTi17122					Black
		X5CrNiMo17122K700					
Coating	none	none	Duplex *	Duplex *	≥ 20 m Zn	10–20 m Zn	-

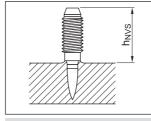
¹⁾ resistant to: UV, saltwater ozone, oil, grease

Threaded studs

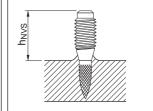

Till Cauca Staas						
	X-BT			X-CRM8		X-EM8H
	Shank ①		Sealing washer 1)	Shank	Threaded sleeve	
Material	Stainless steel	X2CrNiMo17132	Elastomer,	Stainless steel	X2CrNiMo17132	Carbon steel
designation	CR 500	X5CrNiMo17122+2H	black	CR 500	X5CrNiMo17122+2H	
	(A4 / AISI316)	(A4 / AISI316)		(A4 / AISI316)	(A4 / AISI316)	Ck 67 MOD
Coating	none	none		none	none	5–13 m Zn ²)

¹⁾ resistant to: UV, saltwater ozone, oil, grease

Fastening quality assurance


Fastening inspection

X-BT M8-15-6 SN12-R


 $h_{NVS} = 15.7-16.8 \text{ mm}$

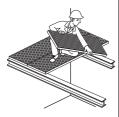
X-CRM8-15-12

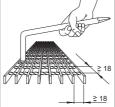
 $h_{NVS} = 16-20 \text{ mm}$

X-EM8 H-15-12

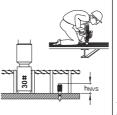
 $h_{NVS} = 15.5-19.5 \text{ mm}$

^{*)} comparable to 45 µm HDG steel (480 h Salt spray test per DIN 50021)

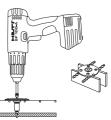

²) Zinc applied by electroplating. Intended for corrosion protection during shipment, storage, construction and service in protected environment. It is not adequate for protection against corrosion in outside or otherwise corrosive applications


Installation

Installation procedure for bar grating


1. Place the grating sections

Widen opening at fastening location if necessary



3. Place the threaded stud

For **X-BT** pre-drill with **TX-BT4/7** stop shank drill bit

4. Tighten the disk

Tightening torque T_{rec} = max. 8 Nm

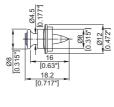
Tightening tool:

- Screwdriver with torque release coupling (TRC)
- 5 mm Allen-type bit

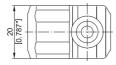
Hilti	Torque
Screwdriver	setting
SF 121-A	11
SF 150-A	9
SF 180-A	8
SF 144-A	8
SF 22-A	9

6/2012 2.137

2.138 6/2012


X-GR Grating Fastening System

Product data


Dimensions

X-GR

R4 [0.158"]

X-CR 16-4.5R Zn P8 SN12-R

General information

Material specifications

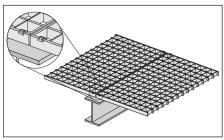
Nail:

Stainless steel: CrNiMo Alloy

Hook:

Carbon steel: DC01
Coating: Duplex*

 $^{*})$ 480 h Salt spray test per DIN 50021 and 10 cycles Kesternich test per DIN 50018/2.0 (comparable to 45 μm HDG steel)


Fastening tool

DX 460 GR with	X-460-F8GR
	fastener guide
DX 76 PTR with	X-76-F8-GR-PTR
	fastener guide

See fastener selection for more details.

Note: Pre-drilled version with DX 460 tool only

Application

Fixing of grating

For fastenings exposed to weather and mildly corrosive conditions.

Not for use in marine atmospheres (upstream)!

Load data

Recommended tensile loads

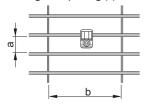
$N_{rec} = 0.6 \text{ kN (135 lb)}$

Notes/conditions:

- Tensile loading is limited by plastic deformation of the hook
- X-GR resist shear by friction and is not suitable for explicit shear load designs

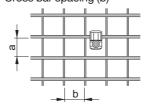
Application requirements

Thickness of base material


 $t_{II} \ge 4 \text{ mm } (0.157'')$

Thickness of fastened material

Grating height: H_G = 25-40 mm (0.98"-1.57")


Grating opening types

Bearing bar spacing (a)

a ≥ 20 mm (3/4")

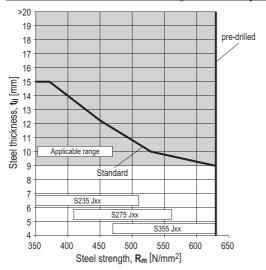
Cross bar spacing (b)

b ≥ 20 mm (3/4")

Edge distance

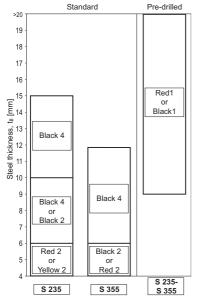
 $c \ge 15 \text{ mm} (0.59'')$

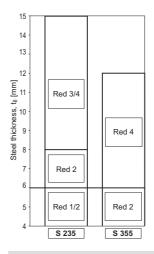
Corrosion information


For fastenings exposed to weather and mildly corrosive conditions. **Not for use in marine atmospheres (upstream)** or in heavily polluted environments.

2.140 8/2011

Application limits

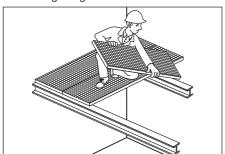

X-GR with DX 460 and DX 76 PTR (pre-drilled only DX 460)



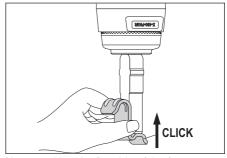
Fastener selection and system recommendation Fastener Item no. Grating height mm (inch) mm (inch) X-GR 25 384235 25.8 (1.02") 25 (1") X-GR 30 384236 30.8 (1.22") 30 X-GR 11/4" 385930 32.5 (1.28") 32 (11/4") X-GR 35 384237 35.8 (1.41") 35 X-GR 11/2" 38 (11/2") 385931 38.9 (1.53") X-GR 40 384238 40.8 (1.61") 40

Cartridge selection and tool energy setting

DX 460 with 6.8/11M cartridges


Fine adjustment by installation tests on site.

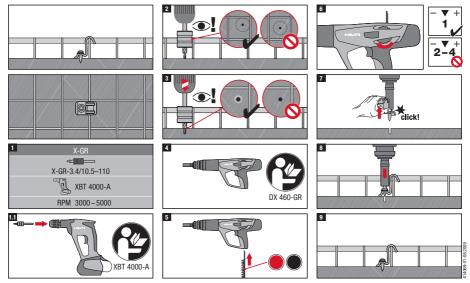
DX 76 PTR with 6.8/18M cartridges


Fastening quality assurance

Installation

Place the grating sections

Place the X-GR fastener



Note: position the flat side of the fastener guide to the fastener

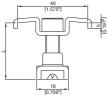
2.142 8/2011

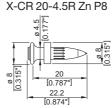
Installation details in case of pre-drilling

Fastening inspection

h_{NVS} = 5-7.6 mm (0.20"-0.30")

2.144 8/2011




X-GR-RU Grating Fastening System

Product data

Dimensions

X-GR-RU

General information

Material specifications

Screw: Carbon steel

Zinc coating:

Nail:

Stainless steel:

Upper part:

Carbon steel:

Zinc coating:

Bottom part:

Carbon steel: S315MC

Zinc coating: Duplex* coated

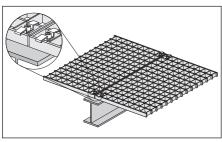
*) 480 h salt spray test per DIN 50021 and 10 cycles Kesternich test per DIN 50018/2.0 (comparable to 45 µm HDG steel)

Duplex* coated

CrNiMo Alloy

Duplex* coated

DD11


Fastening tool

DX 460 GR with	X-460-F8GR
	fastener guide
DX 76 with	X-76-F8-GR
DX 76 PTR with	X-76-F8-GR-PTR
	fastener guide

See fastener selection for more details.

Note: Pre-drilled version with DX 460 tool only

Application

Fastening of grating

For fastenings exposed to weather and mildly corrosive conditions.

Not for use in marine atmospheres (upstream)!

2.145 8/2011

Load data

Recommended tensile loads N_{rec} [kN]

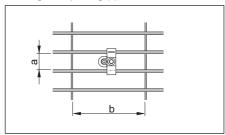
 $N_{rec} = 0.8 \text{ kN (180 lb)}$

Notes/Conditions:

- Tensile loading is limited by plastic deformation of the saddle clip
- X-GR-RU resists shear by friction and is not suitable for explicit shear load designs

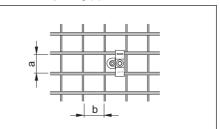
Application requirements

Thickness of base material


 $t_{II} \ge 4 \text{ mm } (0.157'')$

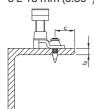
Thickness of fastened material

Grating height: $H_G = 25-40 \text{ mm} (0.98''-1.57'')$


Grating opening types

Bearing bar spacing (a)

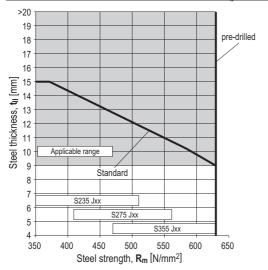
25 to 32 mm (1" to 11/4")


Cross bar spacing (b)

b ≥ 30 mm (1.18")

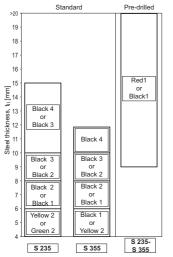
Edge distances

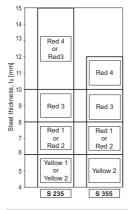
 $c \ge 15 \text{ mm } (0.59'')$


Corrosion information

For fastenings exposed to weather and mildly corrosive conditions. **Not for use in marine atmospheres (upstream)** or in heavily polluted environments.

Application limits


X-GR-RU with DX 460 or DX 76 / DX 76 PTR (pre-drilled only DX 460)

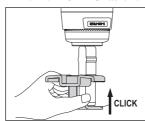


Fastener selection and system recommendation Fastener Grating height Item no. mm (inch) mm (inch) X-GR-RU 25/30 384239 32 (1.26") 25-30 (0.98"-1.18") X-GR-RU 11/4" 34 (1.34") 27-32 (1.06"-1.26") 385932 X-GR-RU 35/40 384240 42 (1.65") 35-40 (1.38"-1.57")

Cartridge selection and tool energy setting

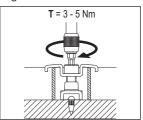
DX 460 with 6.8/11M cartridges

DX 76 PTR with 6.8/18M cartridges


Fastening quality assurance

Installation

Place the grating sections

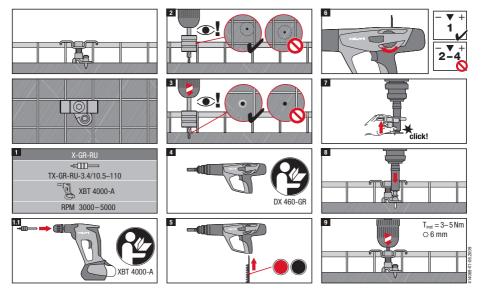


Drive the X-GR-RU fastener

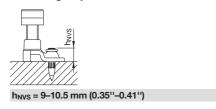
Note: position the flat side of the fastener guide to the saddle!

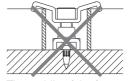
Tighten the screw

 $T_{rec} = 3-5 \text{ Nm} (2.2-3.7 \text{ ft-lb})$


Tightening tool:

- Screwdriver with torque release coupling (TRC)
- 6 mm Allen-type bit

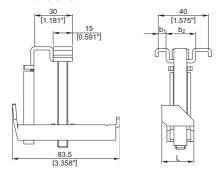

Hilti screwdriver	Torque setting
SF 121-A	TRC 5-7
SF 150-A	TRC 3-5



Installation details in case of pre-drilling

Fastening inspection

The saddle of the fastener should not been bent, see installation instruction above.


2.150 8/2011

X-MGR Grating Fastening System

Product data

Dimensions

General information

Material specifications

Screw: Carbon steel Zinc coating: 60 μm HDG Upper part: Carbon steel: SPCC-S Zinc coating: 65 μm HDG Bottom part: Carbon steel: SPCC-S Zinc coating: 65 μm HDG Nut: Carbon steel Zinc coating: 45 μm HDG Nut-holder: Stainless steel: SS304

Fastening tool

SF 121-A, SF 150-A

Application

Fixing of grating

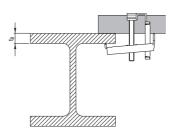
For fastenings exposed to weather and mildly corrosive conditions.

Not for use in marine atmospheres (upstream)!

Load data

Recommended tensile loads N_{rec} [kN]

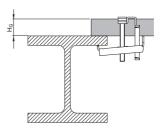
$N_{rec} = 0.6 \text{ kN (135 lb)}$


Notes/Conditions:

- Tensile loading is limited by plastic deformation of the saddle clip
- X-MGR resists shear by friction and is not suitable for explicit shear load designs

Application requirements

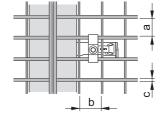
Thickness of base material


 $t_{II} = 3 - 25 \text{ mm} (0.118 - 0.984'')$

Thickness of fastened material

Grating height:

 $H_G = 25-40 \text{ mm} (0.98''-1.57'')$



Total fastening height

 $H_G + t_{||} \le 65 \text{ mm } (2.56'')$

Grating opening types

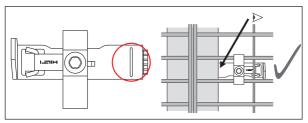
	а	b	C
Fastener	mm (inch)	mm (inch)	mm (inch)
X-MGR M60	30 (1.18")	≥ 30 (1.18")	≤ 3 (0.118")
X-MGR W60	25 (0.98")	≥ 30 (1.18")	≤ 4.8 (³/ ₁₆ ")

8/2011

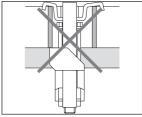
Spacing and edge distances

No general restriction exists.

Corrosion information


For fastenings exposed to weather and mildly corrosive conditions. **Not for use in marine atmosphere (Upstream)** or in heavily polluted environment.

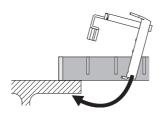
Fastener selection and system recommendation							
Fastener	Item-no.	b ₁ mm (inch)	b ₂ mm (inch)	L mm (inch)	Steel flange thickness t _{II} mm (inch)	Grating height mm (inch)	Fastening tool
X-MRG-M60	384233	4	20	29	3–25	25–40	SF 121-A,
		(0.16'')	(0.79'')	(1.14'')	(0.12''-0.98'')	(0.98''–1.57'')	SF 150-A
X-MRG-W60	384234	6	24	25	3–25	25–40	SF 121-A,
		(0.24'')	(0.94'')	(0.98'')	(0.12''-0.98'')	(0.98''–1.57'')	SF 150-A

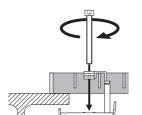


Fastening quality assurance

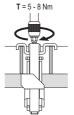
Fastening inspection

The sign on the clip has to be positioned under the steel flange


The saddle of the fastener should not been bent, see installation instructions below.


Installation

Place the grating sections



Place the X-MGR fastener

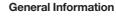
Tighten the screw

 $T_{rec} = 5-8 \text{ Nm} (3.7-5.9 \text{ ft-lb})$

Tightening tool:

- Screwdriver with torque release coupling (TRC)
- 6 mm / 1/4" Allen-type bit

Torque setting
TRC 7-11
TRC 5-9



X-FCP Checker Plate Fastening System

Product data

Dimensions

X-FCP-R 5/10 X-FCP-F 5/10 (2) \1,25 10

Material specifications

See fastener selection for more details.

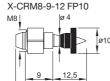
Fastening tool

See fastener selection for more details.

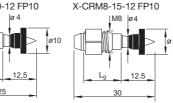
Approvals

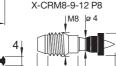
10

ABS: X-FCP-R

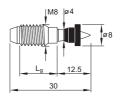

LR: X-FCP-R

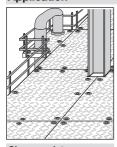
X-FCP Sealing ring


ø 45



HILTI


ø 45


12.5

25

X-CRM8-15-12 P8

Application

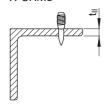
Chequer plate

2.155 8/2011

Load data

Recommended loads:

$N_{rec} = 1.8 [kN]$


Conditions:

- Limited by the strength of the X-CRM8 threaded stud
- Recommended loads are valid for fastenings of steel and aluminium with 20 mm pre-drilling.
- X-FCP-F and X-FCP-R are not intended for shear loading.

Application requirements

Thickness of base material

X-CRM8

Thickness of fastened material

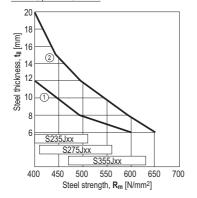
Thickness of chequer plates: t₁ ≈ 5.0–13.0 mm

Minimum steel thickness t_{II} ≥ 6 mm

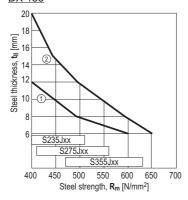
Spacing and edge distances

X-CRM8

Edge distances: $c \ge 15 \text{ mm}$ Spacing: $s \ge 15 \text{ mm}$



Application limits


DX 76, DX 76 PTR

- ① X-CRM8-__-12 FP10 / DX 76 (impact)
- ② X-CRM8-__-12 FP10 / DX 76 (co-acting)

 $t_{II} \ge 6 \text{ mm}$

DX 460

- ① **X-CRM8-__-12 P8** / DX 460 (impact)
- 2 X-CRM8-__-12 P8 / DX 460 (co-acting)

 $t_{II} \ge 6 \text{ mm}$

Note:

For co-acting operation push the fastener all the way back against the piston with a ramrod.

Fastener selection and system recommendation

Application areas

Marine, offshore, petrochemical, caloric (coal, oil) power plants, etc. lifetime use

X-FCP system

X-FCP-R Item no. 308860	X-FCP-F Item no. 308859	Sealing ring	Tools
Note:	Note:		SF 100-A, SF 120-A
Not for use in automobile		Drip-through of water/	
tunnels, swimming pools or	atmosphere or in heavily	oil needs to be prevented	
similar environments	polluted environment.		

Threaded studs

Designation	Chequer plate thickness		Tools
X-CRM8-15-12	9–13 mm		DX 460, DX 76, DX 76 PTR
X-CRM8-9-12	5– 8 mm		DX 460, DX 76, DX 76 PTR
	55 =	99	

Cartridge selection and tool energy setting

Designation	Tools
6.8/11M red cartridges	DX 460
6.8/18M yellow cartridges	DX 76, DX 76 PTR

Tool energy adjustment by setting tests on site.

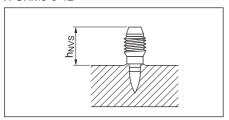
Material and coatings

X-FCP system

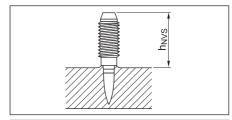
•	X-FCP-R		X-FCP-F	All Systems	
	1	2	1	2	3
	Disk	Screw	Disk	Screw	Sealing ring
Material designation	X5CrNiMo17122	X2CrNiMo17132	ST2K40 BK	9SMnPb28 K	Neoprene, black
Coating	none	none	Duplex *	Duplex *	

 $^{^{*})}$ 480 h Salt spray test per DIN 50021 and 10 cycles Kesternich test per DIN 50018/2.0 (comparable to 45 μm HDG steel)

Threaded studs CRM8


Tilleducu Stuus Offilio						
	X-CR shank	CRM8 threaded sleeve				
Material designation	Stainless steel	X2CrNiMo17132				
	wire, CR 500	X5CrNiMo17122+2H				
	(A4 / AISI316)	(A4 / AISI316)				
Coating	none	none				

Fastening quality assurance


Fastening inspection

X-CRM8-9-12

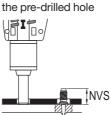
 $h_{NVS} = 13 \pm 2 mm$

X-CRM8-15-12

 $h_{NVS} = 18 \pm 2 mm$

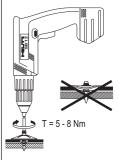
Installation

Installation procedure for chequer plates


Plates must be pre-drilled or prepunched

Place and align the plate section

2.
Drive the X-CRM
threaded stud through



3. Screw the X-FCP on the stud by hand

4.

Tighten the disk

Tightening torque

 $T_{rec} = 5-8 \text{ Nm}$

Tightening tool:

- Screwdriver with torque release coupling (TRC)
- S-NSX 2.8 x 15 bit

Hilti Torque
Screwdriver setting
SF 120-A TRC 5.5-7
SF 150-A TRC 8-9

2.160 8/2011

X-IE Wall Insulation Fastener

Product data

Dimensions

X-IE 6 X-IE 9

HDT 90

General information

Material specifications

Plate: X-IE 6 – HDPE, colourless X-IE 9 – HDPE, black (BK)

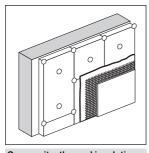
Nail: Carbon steel shank: HRC 58

Zinc coating: 5–13 m

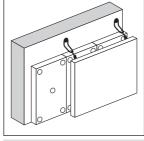
Fastening tool

DX 460 IE and DX 460 IE XL

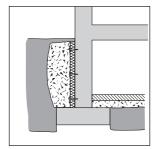
See fastener selection for more details.


Approvals

SOCOTEC WX 1530 (France)


Comment: European Technical Approvals for the fasteners **XI-FV** (ETA-03/0004) and **SX-FV** (ETA-03/0005) for use in ETICS are available

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

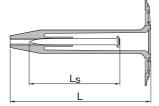

Applications

Composite thermal insulation

Insulation behind curtain walls

Moisture barriers / drainage plates

Fastener selection and system recommendation


Fastener selection

Select L = t_I

For soft insulation use X-IE 9, or X-IE 6 with HDT 90 / HDT 90 BK. For intermediate thicknesses use next shorter X-IE.

For EPS insulation material values listed in table apply only.

Designation	Fastener	Item no.	Insulation thickness
	X-PH Ls		L [mm]
X-IE 6-25	X-PH 47	2041714	25
X-IE 6-30	X-PH 52	2041715	30
X-IE 6-35	X-PH 52	2041716	35
X-IE 6-40	X-PH 52	2041717	40
X-IE 6-50	X-PH 62	2041718	50
X-IE 6-60	X-PH 62	2041719	60
X-IE 6-70	X-PH 62	2041740	70
X-IE 6-75	X-PH 62	2041741	75
X-IE 6-80	X-PH 62	2041742	80
X-IE 6-90	X-PH 62	2041743	90
X-IE 6-100	X-PH 62	2041744	100
X-IE 6-120	X-PH 62	2041745	120
X-IE 6-140	X-PH 62	2041393	140
X-IE 6-150	X-PH 62	2048523	150
X-IE 6-160	X-PH 62	2041394	160
X-IE 6-180	X-PH 62	2041395	180
X-IE 6-200	X-PH 62	2041396	200
X-IE 9-60 BK	X-PH 62	2041746	60
X-IE 9-80 BK	X-PH 62	2041747	80
X-IE 9-90 BK	X-PH 62	2041748	90
X-IE 9-100 BK	X-PH 62	2041749	100
X-IE 9-120 BK	X-PH 62	2041750	120
X-IE 9-140 BK	X-PH 62	2041751	140
X-IE 9-160 BK	X-PH 62	2041752	160
X-IE 9-180 BK	X-PH 62	2041753	180
X-IE 9-200 BK	X-PH 62	2041754	200

System recommendation

Tool

DX 460 IE and DX 460 IE XL

Cartridge selection and tool energy setting

Cartridge recommendation:	Steel:	6.8/11M yellow or red cartridge
	Concrete	6.8/11M yellow or red cartridge
	Masonry:	6.8/11M yellow or green cartridge

Tool energy adjustment by setting tests on site.

Application requirements

Thickness of base material

Concrete: $h_{min} = 80 \text{ mm}$ Steel: $t_{II} \ge 4 \text{ mm}$

Thickness of fastened material

Insulation thickness: $t_1 = 25-200 \text{ mm}$

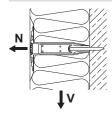
Spacing and edge distances

For setting instructions please inquire at the insulation material supplier.

Application limits

Concrete: $f_{cc} = 15-45 \text{ N/mm}^2$

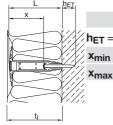
aggregate size ≤ 32 mm


Sand-lime masonry: $f_{cc} = 15-45 \text{ N/mm}^2$ Clinker brick work: $f_{cc} = 28-45 \text{ N/mm}^2$ Steel: $f_u = 360-540 \text{ N/mm}^2$

 $t_{II} = 4-6 \text{ mm}$

6/2012 2.163

Load data

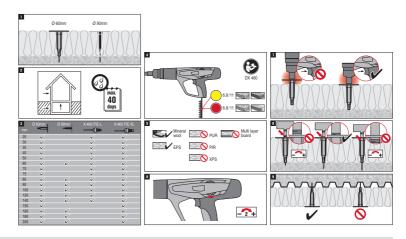

Recommended loads

	Insulation thickness t _I [mm]				
	40	50	60–70	75	80–200
X-IE 6	Shear,	V _{rec} [N]			
Polystyrol - EPS [30 kg/m³]	150	250	300	325	350
X-IE 6	Pullove	er, N _{rec} [[N]		
Polystyrol - EPS [30 kg/m³]	250	290	300	300	300
X-IE 9, HDT 90	Pullover, N _{rec} [N]				
Mineral wool [≥7.5 kN/m²]*	-	-	135	135	135
Mineral wool [≥ 15 kN/m²]*	-	-	250	250	250

^{*)} Tensile Strength σ_{mt} according to DIN EN 1607

Fastening quality assurance

Fastening inspection



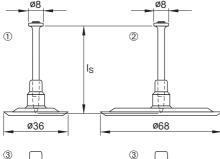
Insulation thickness t_I [mm]

| 40 | 50 | 60 | 70 | 75 | 80 | 90 | 100 | 120 | 140 | 150 | 160 | 180 | 200 | h_{ET} = 24–29 mm

 x_{min} [mm]
 9
 9
 19
 29
 34
 39
 49
 59
 79
 99
 109
 119
 139
 159

 x_{max} [mm]
 14
 14
 24
 34
 39
 44
 54
 64
 84
 104
 114
 124
 144
 164

When base material properties are questionable, jobsite qualification is necessary



X-SW 30, X-SW 60 Soft Washer Fastener

Product data

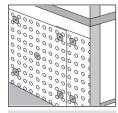
Dimensions

X-SW 30 X-SW 60 ø8 (1)

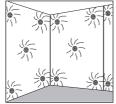
General information

Material specifications

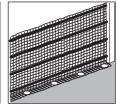
PE Plate: Nail: Carbon steel shank: HRC 52.5 Zinc coating: 5–13 μm

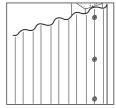

Fastening tool

DX 460, DX 36, DX-E 72, DX 460-MX


See fastener selection for more details.

Applications


Examples


Membranes and drainage plates

Insulation up to 30 mm thick

Nets, fabric and similar

Plastic corrugated sheets

2.165 8/2011

Load data

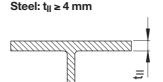
Design data

Recommended loads

Design conditions:

- 1. Minimum 5 fastenings per fastened unit.
- 2. Predominantly static loading.
- Design loads valid for nail pull-out strength. Fastened material has to be considered separately.
- 4. Valid for concrete C 30/37.

Test data


For more detailed information on the performance of the system please contact Hilti.

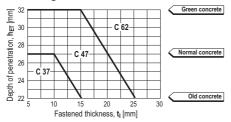
Application requirements

Thickness of base material

Concrete: h_{min} = 80 mm

Thickness of fastened material

Membranes, nets, etc.: $t_l \le 25 \text{ mm}$ Insulation: $t_l \le 30 \text{ mm}$


Spacing and edge distances

For setting instructions please inquire at the supplier of fastened material.

Fastener selection and system recommendation

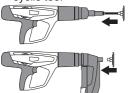
Fastening to concrete

- X-SW 30 for stronger, less damageable material.
- X-SW 60 for more easily damaged material (i.e. aluminium foil, nets, paper, etc.)
- Select C 37, C 47 and C 62 according to base material conditions and fastened thickness

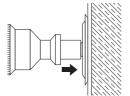
System recommendation

Fastener				Tools
Designation	Item no. Packs of 100/150	Packs of 400/500	L _s [mm]	Designation
① X-SW 30-C 37	40643	40614	37	DX 460, DX 36, DX-E 72
① X-SW 30-C 47	40644	40615	47	DX 460, DX 36, DX-E 72
① X-SW 30-C 62	40645	40616	62	DX 460, DX 36, DX-E 72
② X-SW 60-C 37	40617		37	DX 460, DX 36, DX-E 72
② X-SW 60-C 47	40618		47	DX 460, DX 36, DX-E 72
② X-SW 60-C 62	40619		62	DX 460, DX 36, DX-E 72
③ X-SW 30	371370			DX 460-MX with collated
③ X-SW 60	371371			X-C nails (3.5 mm shank dia.)

Cartridge selection and tool energy setting


Cartridge recommendation:	Concrete	6.8/11M yellow or red
	Masonry:	6.8/11M green

Tool energy adjustment by setting tests on site.

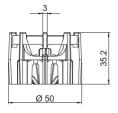

Fastening quality assurance

Installation


 Load X-SW fastener on cyclic tool

2. Press the **X-SW** against the surface

3. Pull the trigger to fasten



X-FS Form Stop

Product data

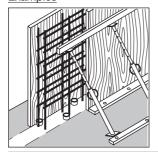
Dimensions

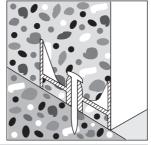
General information

Material specifications

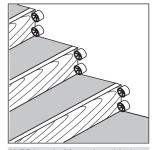
Nail: zinc coating:

5-13 μm


Fastening tool

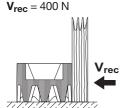

DX 460, DX 36, DX 460-MX

See fastener selection for more details.


Applications

Examples

Positioning concrete forms on concrete surfaces. Leave in place, grey polyethylene is <u>non rusting, nearly invisible</u> and <u>non-conductive</u>.



X-FS is suitable and usable for minor forming applications

Load data

Recommended working loads

(predominantly static, however, vibration from concrete compacting is allowed)

Application requirements

Thickness of base material Concrete: h_{min} = 80 mm

Spacing and edge distances

Spacing and edge distances depending on job site requirements.

Corrosion information

For temporary fixations no restrictions exist.

Fastener selection and system recommendation

Fastener				Tools
Designation	Item no.	L _s [mm]	Nail shank diameter [mm]	Designation
Designation	item no.	-s [iiiiii	diameter [min]	Designation
① X-FS C 52 *	407346	52	3.5	DX 460, DX 36
2 X-FS MX **	408022			DX 460-MX

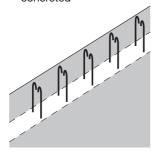
^{*} For unusual applications, **X-FS** available with other nails on special order

Cartridge selection and tool energy setting

Cartridge recommendation:	Steel:	6.8/11M red cartridge
	Concrete:	6.8/11M yellow or red cartridge
	Masonry:	6.8/11M yellow or green cartridge

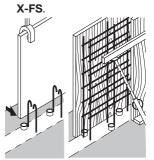
Tool energy adjustment by setting tests on site.

2.170 8/2011


^{**} X-FS without nail for fastening with collated nails.

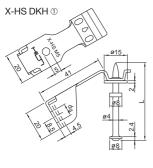
Fastening quality assurance

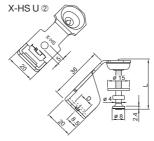
Installation

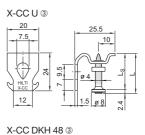

1. Mark out unit to be concreted

2. Place X-FS tangent to marked out lines.

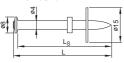
 ${\it 3. Position forms against}\\$

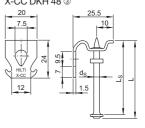

2.172 8/2011




X-HS Threaded Hanger and X-CC Loop **Hanger Systems**

Product data


Dimensions



General information

Material specifications

Carbon steel shank:	HRC 58	X-HS M _ DKH, X-HS M/W_U, X-CC_U
X-HS:	Zinc coating:	10 μm
X-CC:	Zinc coating:	2.5 μm
Nail:	Zinc coating:	5–13 μm

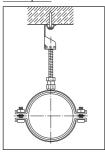
Fastening tools

DX 460-F8, DX 351-F8, DX 36

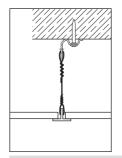
See fastener selection for more details.

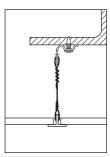
Approvals

IBMB (Germany):	X-HS with X-DKH
SOCOTEC (France):	X-HS/X-CC with X-DKH
Lloyds Register:	X-HS
ICC, UL, FM:	X-HS W6/10


Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

2.173 8/2011




Applications

Examples

Threaded rod attachments to concrete and steel

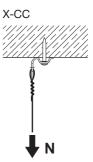
Wire attachments to concrete and steel

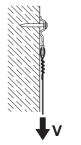

Load data

Design data

Recommended loads

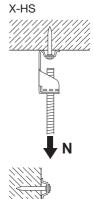
Concrete (DX-Kwik with pre-drilling) or steel


X-HS



Fastener designation	N _{rec} = V _{rec} [kN]	Base material
X-HS DKH 48	0.9	Concrete
X-HS U19	0.9	Steel
X-CC DKH 48	0.9	Concrete
X-CC U16	0.9	Steel

Conditions:


- Predominantly static loading.
- Concrete C20/25-C50/60
- Strength of fastened material is not limiting.
- Observance of all application limitations and recommendations (especially predrilling requirements).

Concrete (DX Standard without pre-drilling)

Fastener designation	N _{rec} [kN]	V _{rec} [kN]	h _{ET} [mm
X-HS_U32	0.4	0.4	27
X-HS_U27	0.3	0.3	22
X-HS_U22	0.2	0.2	18
X-CC U27	0.2*	0.3	22
X-CC U22	0.15*	0.2	18

*) eccentric loading considered

Conditions:

For more detailed information please contact Hilti.

- Minimum 5 fastenings per fastened unit (normal weight concrete).
- All visible failures must be replaced.
- With lightweight concrete base material and appropriate washers, greater loading may be possible, please contact Hilti.
- Predominantly static loading.
- Observance of all application limitations and recommendations.

Test data

Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual.

	Mean ultimate	Embedment	Variation	Concrete strength	Failure
	tensile loads	depth	coefficient	at 28 days	mode
Fastener	N _{u,m} [kN]	h _{ET} [mm]	[%]	f _{cc} [N/mm ²]	
X-HS_ U22 P8 S15	1.79	17.9	27.3	47.4	Pull-out
X-HS_ U27 P8 S15	2.28	22.6	47.8	47.4	Pull-out

Application requirements

Thickness of base material

Concrete

DX-Kwik
(with pre-drilling) h_{min} = 100 mm

DX Standard

 $h_{min} = 80 \text{ mm}$

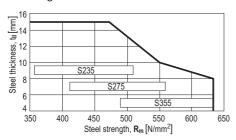
t_{||} ≥ 4 mm

Spacing and edge distances

Minimum spacing and edge distances: See corresponding nail data sheet of X-U and X-DKH.

Steel

Corrosion information


(w/o pre-drilling)

These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

Fastening to steel - X-HS U19 with DX351

Fastener selection

Program, technical information

	Fastener				Tools
		Shank Ø	Shank length		
Base material	Designation	d _S [mm]	L _S [mm]	L [mm]	
① Concrete pre-drilled	X-HS _ DKH 48 P8S15	4.0	48	50.0	DX 460-F8
② Concrete	X-HS _ U 32 P8S15	4.0	32	34.4	DX 460-F8,
	X-HS _ U 27 P8S15	4.0	27	29.4	DX 351-F8,
	X-HS _ U 22 P8S15	4.0	22	24.4	DX 36
Steel	X-HS _ U 19 P8S15	4.0	19	21.4	
3 Concrete pre-drilled	X-CC DKH 48 P8S15	4.0	48	50.0	DX 460-F8
3 Concrete	X-CC U 27 P8	4.0	27	29.4	DX 460-F8,
	X-CC U 22 P8	4.0	22	24.4	DX 351-F8,
Steel	X-CC U 16 P8	4.0	16	18.4	DX 36

Type of threading: M = metric; W6, W10 = Whitworth 1/4"; 3/8"

X-HS order information

Item no.	Designation	Item no.	Designation
361788	X-HS M6 U32 P8 S15	386214	X-HS M8 U19 P8 S15
386223	X-HS M6 U27 P8 S15	386215	X-HS M10 U19 P8 S15
361789	X-HS M8 U32 P8 S15	386217	X-HS W10 U19 P8 S15
386224	X-HS M8 U27 P8 S15	386218	X-HS M6 U22 P8 S15
361790	X-HS M10 U32 P8 S15	386219	X-HS M8 U22 P8 S15
386225	X-HS M10 U27 P8 S15	386222	X-HS W10 U22 P8 S15
386226	X-HS W6 U27 P8 S15	386216	X-HS W6 U19 P8 S15
386227	X-HS W10 U27 P8 S15	386220	X-HS M10 U22 P8 S15
386213	X-HS M6 U19 P8 S15	386221	X-HS W6 U22 P8 S15

Type of threading: M = metric; W6, W10 = Whitworth 1/4"; 3/8"

X-CC order information

Item no.	Designation
386229	X-CC U22 P8
386230	X-CC U27 P8
299937	X-CC DKH P8 S15
386228	X-CC U16 P8

Cartridge selection

Cartridge recommendation:

Steel: **6.8/11M red cartridge** $t_{\parallel} \ge 6 \text{ mm}$ **6.8/11M green cartridge** $t_{\parallel} < 6 \text{ mm}$

Concrete: 6.8/11M yellow cartridge on green/fresh and standard concrete

6.8/11M red cartridge on precast, old and hard concrete

Tool energy adjustment by setting tests on site.

Fastening quality assurance

Installation

X-HS

Attach the threaded rod to the X-HS before fastening

2. For **DKH 48** pre-drill (Ø 5 x 23)

Load the assembly into the tool

4. Locate the nail, compress the tool, pull the trigger and the fastening is complete

Bend the X-HS assembly down to the vertical position

X-CC

Assemble the wire with the X-CC

2. For **DKH 48** pre-drill (Ø 5 x 23)

Load the assembly into the tool

4. Locate the nail, compress the tool, pull the trigger and the fastening is complete

Adjust the wire as required

Quality assurance

X-HS

 $h_{NVS} = 6-10 \text{ mm}$

X-CC

 $h_{NVS} = 4-7 \text{ mm}$

Electrical Hanger Systems X-HS MX and X-CC MX

Product data

Dimensions

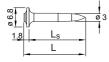
X-HS MX

General information

Material specifications

X-HS MX / X-CC MX:

Zinc coating:


 $\geq 2.5 \,\mu m$

Fastening tools

GX 120-ME, GX 100-E, DX 460 MX, DX 351 MX

See fastener selection for more details.

X-GHP 20/24

X-U 16/22

Applications

Example

Hanger systems for light cable trays, etc.

- Threaded rod attachments
- Wire attachments

These zinc coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

Load data

Design data

Recommended loads on concrete

Fastener designation	$N_{rec} = V_{rec} [kN]$
X-HS MX	0.1
X-CC MX	0.05 (N _{rec} *)
	0.1 (V _{rec})

^{*)} eccentric loading considered

Conditions:

- Minimum 5 fastenings per fastened unit (normal weight concrete).
- All visible failures must be replaced.
- With lightweight concrete base material and appropriate washers, greater loading may be possible, please contact Hilti.
- Predominantly static loading.
- Observance of all application limitations and recommendations.

Recommended loads on steel

Fastener designation	$N_{rec} = V_{rec} [kN]$
X-HS MX, X-CC MX	0.45

Test data

Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual. For more detailed information please contact Hilti.

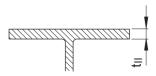
Load capacity of the nails:

Fastenings to concrete

Nail	Average tensile failure load Nu.m [kN]	Scatter	Embedment depth	Concrete strength f _{cc} [N/mm ²]
INall	Nu,m [KIN]	[70]	h _{ET} [mm]	Icc [IV/IIIII]
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-U 22 MX	3.18	37.8	20.1	54.7

Application requirements

Thickness of base material


Concrete

X-U: $h_{min} = 80 \text{ mm}$ X-GHP, X-GN:

 $h_{min} = 60 \text{ mm}$

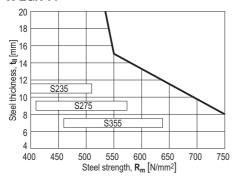
Steel

 $t_{II} \ge 4 mm$

Spacing and edge distances

Spacing and edge distances depending on job site requirements.

Corrosion information


These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening** Principles and Technique section.

Application limits

Fastening to steel

X-EGN 14

2.181 8/2011

Fastener selection and system recommendation

Fastener selection

	Nail			
Base material	Designation	Shank Ø d _s [mm]	Shank length L _s [mm]	L [mm
Concrete	X-GHP 20 MX	3.0	20	21.8
	X-GHP 24 MX	3,0	24	25,8
	X-U 22 MX	4.0	22	24.4
Steel	X-EGN 14 MX	3.0	14	15.8
	X-U 16 MX	4.0	16	18.4

Fastener selection: Order information

Fastener	Designation	Item no.
Threaded Rod Hanger	X-HS M4 MX	273367
	X-HS M6 MX	272073
	X-HS W6 MX	228341
	X-HS M8 MX	273368
Ceiling clip	X-CC MX	228342
GX nails	X-EGN 14 MX	338872
	X-GHP 20 MX	285890
	X-GHP 24 MX	438945
DX Nails	X-U 16 MX	237344
	X-U 22 MX	237346

System recommendation

DX tools: Steel: 6.8/11M yellow or red cartridge

Concrete: **6.8/11M yellow cartridge** on green/ fresh and standard concrete

6.8/11M yellow or red cartridge on precast, old and hard concrete

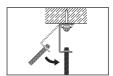
GX 120-ME tool: gas can GC 22

GX 100-E tool: gas can GC 11 (GC 12 in USA)

Tool energy adjustment by setting tests on site.


Fastening quality assurance

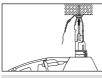
Installation

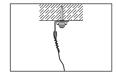

X-HS MX

1. Load the X-HS into the tool

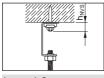
2. Locate the nail, compress the tool, pull the trigger and the fastening is complete

3. Attach the rod and bend the X-HS assembly down to the vertical position

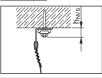

X-CC MX


1. Assemble the wire with the **X-CC**

2. Load the assembly into the tool


3. Locate the nail, compress the tool, pull the trigger and the fastening is complete

4. Adjust the wire as required


Quality assurance

X-HS MX

 $h_{NVS} = 4-8 \text{ mm}$

X-CC MX

 $h_{NVS} = 4-8 \text{ mm}$

X-HS-W - Wire Hanging System

Product data

Fasteners/Components Overview

Pre assembled

General information

Material specifications

X-HS-W:

Zinc coating $\geq 2.5 \,\mu m$

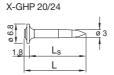
Nail:

Zinc coating 5–13 μm

Carbon steel shank: HRC 58

X-EGN, X-GHP, X-U

Fastening tools

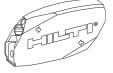

DX 460-F8, DX 351-F8, GX 120-ME

See fastener selection for more details.

Magazined

GX Nails:

DX Nails:


X-U 16/22/27

X-EGN 14

Locking Mechanism

Applications

Examples

Round Air Ducts

Square Air Ducts

Light weight Cable Trays / Lights

Load data

Design data

Recommended loads

DX Standard for concrete

Fastener designation	N _{rec} [kN]	V _{rec} [kN]	her [mm]
X-HS-W U27	0.20	0.3	22
X-HS-W U22	0.15	0.2	18
X-HS-W with GHP20/24	0.05	0.1	14

Conditions:

- Minimum 5 fastenings per fastened unit (normal weight concrete).
- All visible failures must be replaced.
- Valid for masonry and concrete GHP20/24: f_{cc} ≤ 55 N/mm²

X-U: $f_{CC} \le 45 \text{ N/mm}^2$

- Predominantly static loading.
- Observance of all application limitations and recommendations.

DX Standard for steel

Fastener designation	N _{rec}	V _{rec}
X-HS-W U16	0.90	0.90
X-HS-W EGN14	0.45	0.45

Conditions:

- Predominantly static loading.
- Observance of all application limitations and recommendations.

Test data

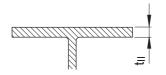
Important note: test data are for information only and cannot be used for design. These data are examples and do not represent the whole range of applications and load cases. Design data for Hilti standard nails in concrete are based on a specific statistical evaluation method taking into consideration high variation coefficients. The evaluation procedure is described in the **Direct Fastening Principles and Technique** section of this manual. For more detailed information please contact Hilti.

Load capacity of the nails (examples):

Fastenings to concrete

	Average tensile	Scatter	Embedment	Concrete
	failure load		depth	strength
Nail	N _{u,m} [kN]	[%]	h _{ET} [mm]	f _{cc} [N/mm ²]
X-HS-W GHP 20 MX	1.83	47.5	15.7	33.0
X-HS-W U 27 P8	2.38	44.8	20.8	33.0

Application requirements


Thickness of base material

Concrete

X-U: $h_{min} = 80 \text{ mm}$ X-GHP, X-GN: $h_{min} = 60 \text{ mm}$

Steel

 $t_l \geq \ 4 \ mm$

Spacing and edge distances

Spacing and edge distances depending on job site requirements.

Corrosion information

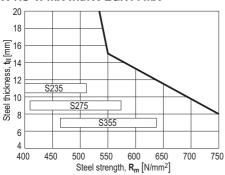
These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

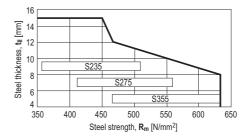
Application limits

Concrete

X-GHP 20/24:


concrete strength $f_{CC} \le 55 \text{ N/mm}^2$

X-U:


concrete strength f_{CC} ≤ 45 N/mm²

Steel

X-HS-W MX with X-EGN14 MX

X-HS-W U16 P8

Fastener selection and system recommendation

Fastener selection: Possible combinations

	Hanger		Nail		
Base material	Designation	Technology	Designation	Shank ∅ d _s [mm]	Shank length L s [mm]
Concrete	X-HS-W	GX	X-GHP 20 MX	3.0	20
Concrete	X-HS-W	GX	X-GHP 24 MX	3,0	24
Concrete	X-HS-W	DX	X-U 22 P8	4.0	22
Concrete	X-HS-W	DX	X-U 27 P8	4.0	27
Steel	X-HS-W	GX	X-EGN 14 MX	3.0	14
Steel	X-HS-W	DX	X-U 16 MX	4.0	16

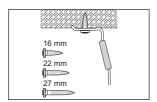
Fastener selection: Order information

Fastener		Designation	Item no.
X-HS-W	For DX tools	X-HS-W U16 P8 1m/3ft	387430
		X-HS-W U22 P8 1m/3ft	387431
		X-HS-W U27 P8 1m/3ft	387432
		X-HS-W U16 P8 2m/7ft	387919
		X-HS-W U22 P8 2m/7ft	387920
		X-HS-W U27 P8 2m/7ft	387921
		X-HS-W U16 P8 3m/10ft	387433
		X-HS-W U22 P8 3m/10ft	387434
		X-HS-W U27 P8 3m/10ft	387435
X-HS-W	For GX tools	X-HS-W MX 1m/3ft	387436
		X-HS-W MX 2m/7ft	387922
		X-HS-W MX 3m/10ft	387437

System recommendation

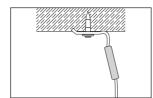
DX tools:	Steel:	6.8/11M red cartridge	for $t_{II} \ge 6$
		6.8/11M green cartridge	for t _{II} < 6
	Concrete:	6.8/11M green or yellow cartridge on	young and standard concrete
		6.8/11M red cartridge on pre-cast, old	and hard concrete
GX 120-M	E tool:	gas can GC 22	
GX 100-E	tool:	gas can GC 11 (GC 12 in USA)	

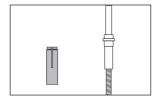
Tool energy adjustment by setting tests on site.

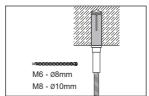


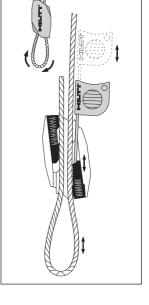
Fastening quality assurance


Installation

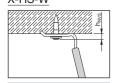

DX




GX



HKD stud



Quality assurance

X-HS-W

 $h_{NVS} = 5.5-8.5 \text{ mm}$

NO LIFTING

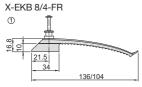
Do not use for lifting, such as in a crane or pully situation.

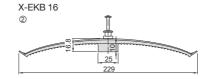
NO MOVEMENT

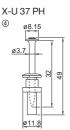
Hilti hangers are to be used to suspend stationary loads only. Do not use to suspend moving services, or services likely to be subject to movement.

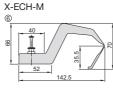
NO JOINING

Hilti hangers must not be used as an in-line joint using a Hilti fastener, or any other joining device. A Hilti hanger assembly must comprise one length of cable and one Hilti fastener only. If a longer length is needed, do not join two assemblies together.

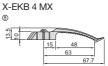


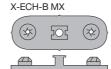

X-EKB, X-ECH Electrical Cable Fasteners


Product data


Dimensions

Single Fastener





Magazine fastener

X-EKB 4 / 8 / 16 MX

X-GHP 20/24

X-GN 27

X-EGN 14

X-U 16/22/27

General information

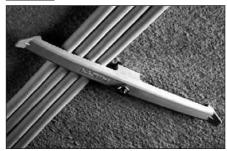
Material specifications

See Fastener selection

Fastening tools

DX 460-F8, DX 351-F8, GX 120-ME, GX 100-E, DX 460 MX, DX 351 MX

See Fastener Selection for more details.


Approvals

UL (USA): X-EKB MX, X-ECH / FR_U37
CSTB (France): X-EKB_U 37, X-ECH_U37

Note: technical data presented in these approvals and design guidelines reflect specific local conditions and may differ from those published in this handbook.

Applications

Examples

X-EKB for fastening cables

X-ECH for fastening bunched cables

Load data

Fastener capacity

X-EKB: Securing electrical cables to concrete ceilings and walls

Max. capacity (number of cables in one X-EKB) at spacing of 50-100 cm

Designation	Number of wires/cables and wire size NYM 3 x 1.5 mm² (Ø 8 mm)	es NYM 5 x 1.5 mm ² (Ø 10 mm)
X-EKB 4	4	3
X-EKB 8	8	5
X-EKB 16	16	10

X-ECH: Securing electrical cable to ceilings and walls

Max. capacity at spacing of 60-80 cm

Designation		No. of nails	Number of cables
X-ECH-S	and X-ECH/FR-S		max. 15 × NYM 5×1.5 ² (Ø 10 mm)
X-ECH-M	and X-ECH/FR-M		max. 25 × NYM 5×1.5 ² (Ø 10 mm)
X-ECH-L	and X-ECH/FR-L		max. 35 × NYM 5×1.5 ² (Ø 10 mm)
X-ECH-15 MX	and X-ECH-B	1 or 2	max. 15 × NYM 3×1.5 ² (Ø 10 mm)
X-ECH-30 MX	and X-ECH-B	1 or 2	max. 30 × NYM 3×1.5 ² (Ø 10 mm)

Conditions:

- For concrete C12/15 to C45/55 (f_{cc} = 15 to 55 N/mm²)
- All visible placing failures have to replaced
- Damaged X-ECH have to replaced

Test data (Examples)

Important note: test data are for information only.

Load capacity of the nails:

The nail resistance is not controlling the failure of the fastener.

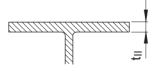
Fastenings to concrete

Nail	Average tensile failure load N _{u,m} [kN]	Variation coefficient [%]	Embedment depth h ET [mm]	Concrete strength f _{cc} [N/mm ²]
X-U 37 PH	1.53	56.4	17.0	31.5
X-U 22 MX	3.18	37.8	20.1	54.7
X-U 27 MX	4.04	35.4	24.5	30.9
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-GN 27 MX	1.91	47.1	19.2	23.7

Application requirements

Thickness of base material

Concrete


X-GHP, X-GN:

X-U: $h_{min} = 80 \text{ mm}$

h_{min} = 60 mm

Steel

 $t_{II} \ge 4 mm$

Thickness of fastened material

Fasteners recommended for cable Ø 8 mm and 10 mm

Spacing and edge distances

X-EKB: approximately 50–100 cm (Adjust as necessary to control cable sag) **X-ECH:** approximately 60–80 cm (Adjust as necessary to limit sagging)

Corrosion information

These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Fastener selection and system recommendation

Fastener program

Fastener with pre-mounted DX-nail: Technical information

Fastener			Tools
Designation	Shank Ø d _S [mm]	Shank length Ls [mm]	
① X-EKB8 U 37	4.0	37	DX460-F8, DX351-F8, DX36
2 X-EKB16 U 37	4.0	37	DX460-F8, DX351-F8, DX36
⑤ X-ECH-S U 37	4.0	37	DX460-F8, DX351-F8, DX36
6 X-ECH-M U 37	4.0	37	DX460-F8, DX351-F8, DX36
⑦ X-ECH-L U 37	4.0	37	DX460-F8, DX351-F8, DX36
① X-EKB4-FR U 37	4.0	37	DX460-F8, DX351-F8, DX36
① X-EKB8-FR U 37	4.0	37	DX460-F8, DX351-F8, DX36
2 X-EKB16-FR U 37	4.0	37	DX460-F8, DX351-F8, DX36
5 X-ECH/FR-S U 37	4.0	37	DX460-F8, DX351-F8, DX36
6 X-ECH/FR-M U 37	4.0	37	DX460-F8, DX351-F8, DX36
② X-ECH/FR-L U 37	4.0	37	DX460-F8, DX351-F8, DX36
③, ④ All nail shanks: carbon	steel, HRC	58, galvani	ized 5–13 µm
01 (11 11 1			

Sleeve/thimble: carbon steel, not hardened, galvanized 5-13 µm

Fastener with pre-mounted DX-nail: Order information

Designation	Item no.	Plastic material
X-EKB 4-FR U37	361581	Polyamide ²)
X-EKB 8 U37	386231	Polyamide 1)
X-EKB 8-FR U37	386233	Polyamide ²)
X-EKB 16 U37	386232	Polyamide 1)
X-EKB 16-FR U37	386234	Polyamide ²)
X-ECH-S U37	386235	
X-ECH-M U37	386236	
X-ECH-L U37	386237	
X-ECH/FR-S U37	386238	Polyamide ²)
X-ECH/FR-M U37	386239	
X-ECH/FR-L U37	386240	

¹⁾ halogen and silicon free, light grey RAL 7035

2.195 8/2011

²) halogen and silicon free, flame retardant, stone grey RAL 7030

Fastener without pre-mounted nail: Technical information

	Cable holder		Nail			
Base material	Designation	Technology	Designation	Shank Ø d _s [mm]	Shank length L _s [mm]	L [mm]
Concrete		GX	X-GN 27 MX	3.0	27	28.9
Concrete	X-EKB (FR) 4 MX	GX	X-GHP 20 MX	3.0	20	21.8
Concrete	X-EKB (FR) 8 MX	GX	X-GHP 24 MX	3.0	24	25.8
Concrete	X-EKB (FR) 16 MX	DX	X-U 22 MX	4.0	22	24.4
Concrete	X-ECH-15 MX	DX	X-U 27 MX	4.0	27	29.4
Steel	X-ECH-30 MX	GX	X-EGN 14 MX	3.0	14	15.8
Steel		DX	X-U 16 MX	4.0	16	18.4

Fastener without pre-mounted nail: Order information

Fastener	Plastic material	Designation	Item no.
Electrical Cable Holder	Polyamide 1)	X-EKB 4 MX	285712
		X-EKB 8 MX	285713
		X-EKB 16 MX	285714
	Polyamide 2)	X-EKB FR 4 MX	285715
		X-EKB FR 8 MX	285716
		X-EKB FR 16 MX	285717
	Polyamide 1)	X-ECH-15 MX	2018247
		X-ECH-30 MX	2018248
		X-ECH-15/B MX	2018729 (kit)
		X-ECH-30/B MX	2018891 (kit)
		X-ECH-B MX	2018391
GX Nails		X-EGN 14 MX	338872
		X-GHP 20 MX	285890
		X-GHP 24 MX	438945
		X-GN 27 MX	340229
DX Nails		X-U 16 MX	237344
		X-U 22 MX	237346
		X-U 27 MX	237347

2.196 8/2011

¹⁾ halogen and silicon free, light grey RAL 7035 2) halogen and silicon free, flame retardant, stone grey RAL 7030

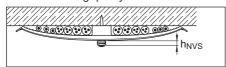
System recommendation

DX tools: Steel: **6.8/11M red cartridge**

Concrete: **6.8/11M yellow cartridge** on green/fresh and standard concrete

6.8/11M red cartridge on precast, old and hard concrete

Masonry: 6.8/11M yellow or green cartridge, green for MX Fastener


GX 120-ME tool: Gas can GC 21 (GC 22 in USA)
GX 100-E tool: Gas can GC 11 (GC 12 in USA)

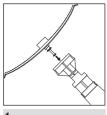
Tool energy adjustment by setting tests on site.

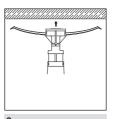
Fastening quality assurance


Fastening inspection

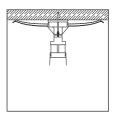
X-EKB fastening quality

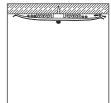
 $h_{NVS} = 7 \pm 2 mm$


X-ECH fastening quality

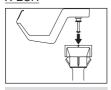

 $h_{NVS} = 7 \pm 2 mm$

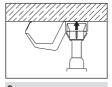
Installation


X-EKB

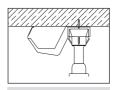

Load X-EKB in the tool

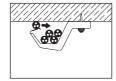
Apply clasp to surface with tool


3. Compress tool and pull the trigger

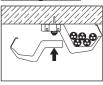

4. Lift arm and put the cables in place

Spacing: approximately 50-100 cm (Adjust as necessary to control cable sagging)


X-ECH


1. Load X-ECH in the tool

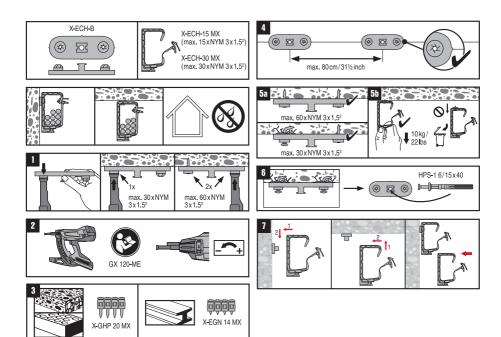
Apply the X-ECH to the surface with tool


3. Compress tool and pull the trigger

Introduce the cables

Stacking X-ECH

2. Introduce the cables


Possible:

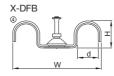
X-ECH-S on X-ECH-S X-ECH-S on X-ECH-M

Not possible:

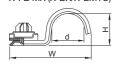
X-ECH-M on X-ECH-S X-ECH-M on X-ECH-M

1. Attach an X-ECH-S and press to "click" Spacing: approximately 60–80 cm (Adjust as necessary to limit sagging)

2.198 8/2011



X-FB (X-DFB / X-EMTC) Electrical Conduit Fasteners


Product data

Dimensions

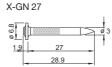
X-FB/X-EMTC

X-FB MX (X-BX/X-EMTC)

General information

Material specifications

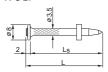
See fastener selection for more details.


Fastening tools

GX 120-ME, GX 100-E, DX 351-MX, DX 460-MX, DX 351-F8, DX 460-F8, DX-E 72

See fastener selection for more details.

X-GHP 20/24


X-EGN 14

X-C 27

Applications

Example

X-FB for rigid conduits

Load data

Design data

Recommended loads

Fastener	Concrete N _{rec} [kN]	Sandlime stone N _{rec} [kN]	Steel N _{rec} [kN]
X-FB / X-DFB (pre-mounted)	0.06	0.06	_
X-FB MX with X-U or X-C (L_s = 22 or 27 mm)	0.06	0.06	_
X-FB MX with X-U 16 MX	_	-	0.06
X-FB MX with X-GHP ($L_s = 20 \text{ or } 24 \text{ mm}$)	0.02	_	_
X-FB MX with X-GN 27	_	0.06	_
X-FB MX with X-EGN 14 or X-U	-	-	0.06

Test data

Important note: test data are for information only.

Load capacity of the nails:

The nail resistance is not controlling the failure of the fastener.

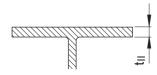
Fastenings to concrete

Nail	Average tensile failure load N _{u,m} [kN]	Scatter [%]	Embedment depth her [mm]	Concrete strength f cc [N/mm²]
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-GN 27 MX	1.91	47.1	19.2	23.7
X-U 22 MX	3.18	37.8	20.1	54.7
X-U 27 MX	4.04	35.4	24.5	30.9

2.200 8/2011

Application requirements

Thickness of base material


Concrete

X-U, X-C: $h_{min} = 80 \text{ mm}$

X-GHP, X-GN: $h_{min} = 60 \text{ mm}$

Steel

 $t_{II} \ge 4 mm$

Thickness of fastened material

X-FB (X-BX, X-EMTC) To fasten conduits, pipes and tubes of Ø 8 mm to 50 mm

Spacing and edge distances

Space fastenings as needed to control sag and maintain alignment.

Corrosion information

These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Application limits

X-C and Gas nails $f_c \le 30 \text{ N/mm}^2$ X-U $f_c \le 40 \text{ N/mm}^2$

8/2011 2,201

Fastener selection

Fastener program

Technical information

With pre-mounted nail	Without pre-mounted nail	d [mm]	W [mm]	H [mm]
3 X-FB 8-C27	X-FB 8 MX	8	31	10
③ X-EMTC 3/8"-C27/-U22	X-BX 3/8" MX	10 (3/8")	33	12
③ X-FB 11-C27	X-FB 11 MX	11	34	13
③ X-EMTC 1/2"-C27/-U22	X-1 D 11 WX	13 (1/2")	04	10
③ X-FB 13-C27	X-EMTC 1/2" MX	13 (1/2")	42	15
③ X-FB 16-C27	X-FB 16 MX	16 (72)	44	18
③ X-FB 18-C27	X-1 D TO WIX	18	46	20
3 X-EMTC 3/4"-C27/-U22	X-EMTC 3/4" MX	19 (3/4")	47	21
③ X-FB 20-C27	X-FB 20 MX	20	48	22
③ X-FB 22-C27	X-FB 22 MX	22	50	24
③ X-FB 24-C27	X-I D ZZ WIX	24	52	26
③ X-FB 25-U27	X-FB 25, X-EMTC 1" MX	25 (1")	53	27
③ X-EMTC 1"-C27/-U22	X-1 D 23, X-LIVITO 1 IVIX	25 (1")	33	21
③ X-FB 28-C27	X-FB 28 MX	28	56	30
③ X-FB 32-C27	X-FB 32 MX	32	58	34
③ X-FB 35-C27	X-FB 32 WIX	35	64	37
③ X-FB 40-C27	X-FB 40 MX	40	69	42
③ X-FB 50-C27	A-FB 40 IVIA	50	77	52
(4) X-DFB 8-C27		30	11	52
(4) X-DFB 11-C27				
(4) X-DFB 11-C27	X-DFB 16 MX	16	66	15
(4) X-DFB 18-C27	Y-DLP IO MIX	18	70	18
(4) X-DFB 10-C27	X-DFB 20 MX	20	75	20
4 X-DFB 22-C27	X-DFB 20 MX	22	79	22
(4) X-DFB 22-C27	X-DFB 25 MX	24	83	24
X-DFB 24-C27 X-DFB 25-C27	V-DLP 53 IAIV	25	03	24
4 X-DFB 25-C27	X-DFB 28 MX	28	91	28
	A-DFD 20 IVIA		106	30
4 X-DFB 35-C27		35		
4 X-DFB 40-C27	Noil abanks Couber stack LIF	40	7ina ana	37
X-U nail	Nail shank: Carbon steel, HF			ting: 5–13 μm
X-C nail	Nail shank: Carbon steel, HF			ting: 5–13 μm
X-GHP nail	Nail shank: Carbon steel, HRC 58 Zinc coating: 2–8 μm			
X-GN nail	Nail shank: Carbon steel, HF	IC 53.5	Zinc coa	tting: 2–8 μm
2.202				8/2011

Material specification:

3 + 4 Galvanized steel sheet, $f_u = 270-420 \text{ N/mm}^2$, $10-20 \mu\text{m}$ zinc coating

Tools:

DX 351-F8, DX 460-F8, DX-E 72 for all X-FB/DFB/EMTC with pre-mounted nails and

GX 120-ME, GX 100-E, DX 351-MX, DX 460-MX for X-FB/DFB/EMTC __MX

X-FB/DFB:

Fastening of electrical conduits and light-duty water or heating pipes on concrete

Capacity: Nail choice:

conduit $\emptyset \leq \mathbf{d}$	X-C and Gas Nails	for $f_c \le 30 \text{ N/mm}^2$
conduit $\emptyset \leq \mathbf{d}$	X-U	for $\mathbf{f_c} \le 40 \text{ N/mm}^2$

System recommendation

DX tools: Steel: **6.8/11M yellow or red cartridge**

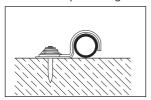
Concrete: **6.8/11M yellow cartridge** on green/fresh and standard concrete

6.8/11M red cartridge on precast, old and hard concrete

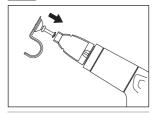
Masonry: 6.8/11M green cartridge

GX 120 tool: Gas can GC 21 (GC 22 in USA)
GX 100 tool: Gas can GC 11 (GC 12 in USA)

Tool energy adjustment by setting tests on site.

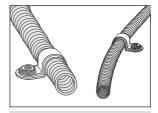

8/2011 2,203

Fastening quality assurance


Fastening inspection

Nailhead not protruding

Installation details

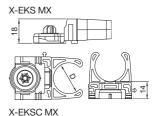

X-FB:

1. Load X-FB in the tool

2. Position against the conduit

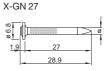
3. Compress tool, pull the trigger and the conduit is fastened

Spacing: Space fastenings as needed to control sag and maintain alignment


X-ECT MX Electrical Cable Tie, X-EKS MX Conduit Clip Fastener

Product data

Dimensions


X-ECT 40 MX

X-GHP 20/24

General information

Material specifications

X-ECT and X-EKS:	Polyamide (halogen and silicon free), light grey RAL 7035 and
	DDT / 'I'

PBT (silicon free, flame retardant), stone grey RAL 7030

Nails:

Carbon Steel HRC 58 X-GHP 20/24, X-EGN 14, X-U

HRC 53.5 X-GN 27

Zink coating 2–8 μm **X-GHP 20/24, X-GN 27, X-EGN 14**

5–13 μm **X-U**

Fastening tools

GX 120-ME, GX 100-E, DX 460-MX, DX 351-MX

See fastener selection for more details.

Approvals

CSTB (France)	X-ECT MX, X-EKS MX, X-EKSC MX (all with X-U22 MX nail)
UL (USA)	X-ECT MX

Applications

Examples

Flexible or rigid cable conduits with cable ties

Rigid conduits

Cable conduits or light duty pipes

Load data

Design data

Recommended loads

Fastener	Service load ¹) [kN]
X-ECT MX / X-ECT 40 MX	0.04
X-EKS MX	0.02

¹⁾ The recommended service load is determined by the serviceability of the plastic part.

Test data (Examples)

Important note: test data are for information only.

Load capacity of the nails:

The nail resistance is not controlling the failure of the fastener.

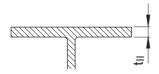
Fastenings to concrete

Nail	Average tensile failure load N _{u,m} [kN]	Scatter [%]	Embedment depth her [mm]	Concrete strength f _{cc} [N/mm²]
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-GN 27 MX	1.91	47.1	19.2	23.7
X-U 22 MX	3.18	37.8	20.1	54.7
X-U 27 MX	4.04	35.4	24.5	30.9

Application requirements

Thickness of base material

Concrete


X-U:

 $h_{min} = 80 \text{ mm}$

X-GHP, X-GN: $h_{min} = 60 \text{ mm}$

Steel

 $t_{II} \ge 4 mm$

Spacing and edge distances

50-100 cm along the cable tie. Adjust spacing as needed to achieve stability of cable tie

Corrosion information

These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Fastener selection

Suitable cables with X-ECT MX and X-ECT 40 MX fastener

Cable type	Cable measure [Ø mm]	No. of cables
NYM 3x1.5	8	14
NYM 5x1.5	10	10

Suitable conduits with X-EKS / X-EKSC MX fastener

Conduit type	Conduit size [mm]	No. of conduits
Plastic conduit	16–40	1

Fastener program

1 3					
	Nail		Shank Ø *)	Shank length*)	I
Base material	Designation	Technology	d _s [mm]	L _s [mm]	L [mm
Concrete	X-U 22 MX	DX	4.0	22	_
Concrete	X-U 27 MX	DX	4.0	27	_
Steel	X-U 16 MX	DX	4.0	16	_
Concrete	X-GHP 20 MX	GX	3.0	20	21.8
Concrete	X-GHP 24 MX	GX	3.0	24	25.8
Concrete or masonry	X-GN 27 MX	GX	3.0	27	28.9
Steel	X-EGN 14 MX	GX	3.0	14	15.8

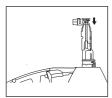
^{*)} Standard chank diameters and shank lengths. Other combinations available on special order.

Tools:

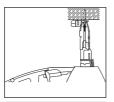
DX technology: DX 460-MX, DX 351-MX GX technology: GX 120-ME, GX 100-E

X-EKS		GX nails	
Item no.	Designation	Item no.	Designation
285719	X-EKS 16 MX	338872	X-EGN 14 MX
285720	X-EKS 20 MX	340229	X-GHP 20 MX
285721	X-EKS 25 MX	438945	X-GHP 24 MX
285722	X-EKS 32 MX	34541	X-GN 27 MX
285723	X-EKS 40 MX		
		DX Nails	
X-ECT		Item no.	Designation
Item no.	Designation	237344	X-U 16 MX
285709	X-ECT MX	237346	X-U 22 MX
285710	X-ECT UV MX	237347	X-U 27 MX
285711	X-ECT FR MX		
432947	X-ECT 40 MX	X-EKSC	
		Item no.	Designation
		274083	X-EKSC 16 MX
		274086	X-EKSC 20 MX
		274087	X-EKSC 25 MX
		386469	X-EKSC 32 MX
		386470	X-EKSC 40 MX

System recommendation


DX tools:	Steel:	6.8/11M yellow or red cartridge
	Concrete:	6.8/11M yellow cartridge on green/fresh and standard concrete
		6.8/11M red cartridge on precast, old and hard concrete
	Masonry:	6.8/11M green cartridge
GX 120 tool:		Gas can GC 21 (GC 22 in USA)
GX 100 tool:		Gas can GC 11 (GC 12 in USA)

Tool energy adjustment by setting tests on site.



Fastening quality assurance

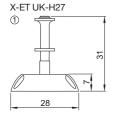
Installation

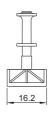
1. Load X-EKS, X-ECT in the tool.

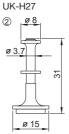
2. Apply X-EKS, X-ECT to surface with tool, compress the tool and pull the trigger.

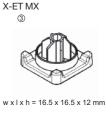
3.
Turn down the X-EKS clip or assemble a cable binder into the X-ECT (Example: X-EKS)

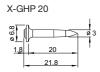
4.
Fasten the cable to the X-EKS clip, the X-ECT (Example: X-EKS)

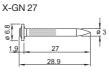

Spacing:


- 50-100 cm along the cable tie
- Adjust spacing as needed to achieve stability of cable tie




X-ET for Fastening Plastic Electrical Cable **Trays and Junction Boxes**


Product data Dimensions



General information

Material specifications

X-ET		Polyethylene
X-ET MX		Polyamide (halogen and silicon free), light grey RAL 7035 and
		PBT (silicon-free, flame retardant), stone grey RAL 7030
Nails:		
Carbon steel	HRC 58	X-GHP 20, X-EGN 14
	HRC 53.5	X-GN 27
	HRC 58	X-U 16 / 22/ 27
Zink-coating	2–8 μm	X-GHP 20, X-EGN 14, X-GN 27
	5–13 μm	X-U

Fastening tools

DX 460-MX, DX 351-MX, GX 120-ME, GX 100-E

See fastener selection for more details.

2.211 8/2011

Applications

Examples

Cable trunking

Junction boxes

Conduits & pipes with metal or textile band

Load data

Design data

Recommended load

Fastener	Service load ¹) [kN]
X-ET	0.1

¹⁾ The recommended service load is controlled by serviceability of the plastic part.

Test data (Examples)

Important note: test data are for information only.

Load capacity of the nails:

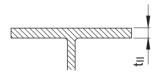
The nail resistance is not controlling the failure of the fastener.

Fastenings to concrete

Nail	Average tensile failure load N _{u,m} [kN]	Scatter [%]	Embedment depth h ET [mm]	Concrete strength f _{cc} [N/mm²]
X-GHP 20 MX	1.61	52.0	14.0	52.2
X-GN 27 MX	1.91	47.1	19.2	23.7
X-U 22 MX	3.18	37.8	20.1	54.7
X-U 27 MX	4.04	35.4	24.5	30.9

Application requirements

Thickness of base material


Concrete

X-U: $h_{min} = 80 \text{ mm}$

X-GHP, X-GN: $h_{min} = 60 \text{ mm}$

Steel

 $t_{II} \ge 4 mm$

Corrosion information

These zinc-coated fasteners are not suitable for long-term service outdoors or in otherwise corrosive environments.

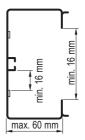
For further detailed information on corrosion see relevant chapter in **Direct Fastening Principles and Technique** section.

Fastener selection and system recommendation

		Fastener		Tools			
No	Techno- logy	Base material	Fastener	Designation	Shank Ø d _s [mm]	Shank length L_S [mm]	
1	DX	Concrete /steel	X-ET	X-ET UK-H27	3.7	27	DX 460-F8
(3	DX	Concrete /stee	X-ET MX	X-U 22/27 MX	4.0	22/27	DX 460-MX, DX 351-MX
(3	DX	Steel	X-ET MX	X-U 16 MX	4.0	16	DX 460-MX, DX 351-MX
(3	GAS	Concrete	X-ET MX	X-GHP 20	3.0	20	GX 120-ME
(3	GAS	Concrete	X-ET MX	X-GN 27	3.0	27	GX 120-ME
(3	GAS	Steel	X-ET MX	X-EGN 14	3.0	14	GX 120-ME
(3	GAS	Sandlime masonry	X-ET MX	All GX nails	3.0	see above	GX 120-ME

Fastener program

Fastener	Item no.	Designation
X-ET	251705	X-ET UK-H27
	285718	X-ET MX
DX Nails	237344	X-U 16 MX
	237346	X-U 22 MX
	237347	X-U 27 MX
GX nails	338872	X-EGN 14 MX
	285890	X-GHP 20 MX
	340229	X-GN 27 MX


Conditions for use:

- No fastenings on ribs
- Underside of trunking must be smooth
- X-ET MX only in predrilled holes

Trunking dimensions: $t_l \le 2 \text{ mm PVC}$

2.214 8/2011

System recommendation

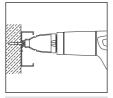
DX tools: Steel: 6.8/11M yellow or red cartridge

Concrete: **6.8/11M yellow cartridge** on green/fresh and standard concrete

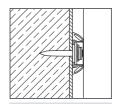
6.8/11M red cartridge on precast, old and hard concrete

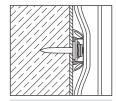
Masonry: 6.8/11M green cartridge

GX 120-ME tool: Gas can GC 21 (GC 22 in USA)
GX 100-E tool: Gas can GC 11 (GC 12 in USA)


Tool energy adjustment by setting tests on site.

Fastening quality assurance


Installation


1. Load X-ET in the tool.

2. Apply X-ET to surface with tool, compress the tool and pull the trigger.

3. Nailheads should be below top of X-ET

4. Cables can be laid right over the fastenings

Spacing:

- 50-100 cm along the trunking
- Adjust spacing as needed to achieve stability of trunking

DX 460 General Purpose Tool

Fastener:

DX 460-MX

X-U MX
X-C MX
X-CT MX
X-ET_MX
X-ECT_MX
X-EKS_MX, X-EMTSC,
X-FB_MX
X-HS_MX
X-CC_MX
X-HS-W_MX
X-EKB_MX

Piston:

X-460-P8 X-460-P8W

for fastening wood

Cartridges:

6.8/11M -

black, red, yellow, green

DX 460-F8

Fastener:

X-U __ P8 / P8 TH DNH 37 P8S15 X-DKH 48 P8S15 X-C __ P8 X-CR __ P8/ P8S12 X-CR M8 X-CT __ DP8 X-FS, X-SW X-FB

X-EM6H/EW6H-__-__ FP8 X-EF7H/-__-_ FP8 X-M6/W6-__-_ FP8 F7-__-_ FP8

X-EM8H-__-_ P8 X-M8-__-_ P8 X-HS, X-CC

X-HS-W_P8

Piston:

X-460-P8 X-460-P8W for fastening wood

Cartridges:

6.8/11M -

black, red, yellow, green

DX-Kwik method:

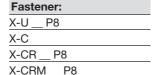
pre-drilling into concrete

Fastener:

X-M6H-__-37 FP8 X-M8H- 37 P8

X-CRM8- 42 FP8

Piston:


X-460-P Kwik

Fastener guide:

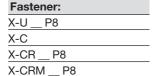
X-460-F8N15

Narrow access fastener guide

(Ø 15.2 mm x 53.2 mm)

Piston:

X-460-P8



Fastener guide:

X-460-F8N10

Narrow access fastener guide

(bxdxL 10.4x25.9x50 mm)

Piston:

X-460-P8

Fastener guide:

X-460-F8GR

Grating fastener guide

Fastener:

X-GR

X-GRRU

X-CR M8

X-EM 8H

Piston:

X-460-PGR

X-460-F8S12

S12 fastener guide

Fastener:

X-U S12

Piston:

X-460-P8

Fastener guide:

X-460-F8SS

8 mm stop spall fastener guide

Fastener:

X-M6-__-FP8 X-W6- - FP8

X-F7-__-FP8

X-M8-__-P8

Piston:

X-460-P8

Fastener guide:

X-460-F10

Fastener:

M10 (possible)

Piston:

X-460-P10

Fastener guide:

X-460-F10SS

10 mm stop spall fastener guide

Fastener:

M10 (possible)

Piston:

X-460-P10

Fastener guide:

X-460-FIE-L

Fastener:

X-IE

Insulation fastener

Piston:

X-460-PIE-L

DX 460-SM

Fastener:

X-EDNK22-THQ12M X-EDN19-THQ12M

Piston:

X-460-PSM

Cartridges:

6.8/11M -

black, red, yellow

DX 351

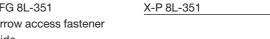
DX 351 with X-MX27 Interior Finishing Tool

Fastener:
X-C_MX
X-U15 MXSP
X-HS_MX, X-CC_MX
X-HS-W
X-EKB_MX
X-ET_MX
X-ECT_MX
X-EKS_MX
X-EMTC
X-FB_MX

Piston: X-P 8S-351

Cartridges: 6.8/11M red, yellow, green, white

DX 351-F8


Fastener:	
X-C_P8/TH/THP	
X-U15 P8TH	
X-CC-UP8	
X-HSU_P8S15	

X-P 8S-351	
Cartridges:	
6.8/11M –	
red, yellow, green, white	

Piston:

Piston:

Fastener guide:
X-FG 8L-351
narrow access fastener
guide

2.221 8/2011

DX 351-BT

Fastener:

X-BT M10-24-6 SN12-R X-BT M10-24-6-R X-BT W10-24-6 SN12-R X-BT W10-24-6-R

Piston:

X-351 BT P 1024

Fastener guide:

BT FG M1024 (M10) BT FG W1024 (W10) Fastener Guide dimensions bxdxL = 17.5x22x29.5 mm

Cartridges:

6.8/11M – high precision - brown

DX 351-BTG Grating

Fastener:

X-BT M8-15-6 SN12-R X-BT M8-15-6-R

Piston:

X-351 BT P G

Fastener guide:

X-352 BT FG G (M8) Fastener Guide dimensions bxdxL = 17.5x22x56 mm

Cartridges:

6.8/11M -

high precision - brown

DX E72

DX E72

Fastener:
X-U
X-C
X-CT
Drywall fasteners
X-SW
X-FS
X-M6/W6/F7
X-FB, X-DFB
X-CR

Cartridges:

5.6/16ND (cal .22NC) – red, yellow, green, white (brown), grey

DX36

DX 36

Fastener:
X-U
X-C
X-CR
X-CT
X-M6/W6/F7/M8
X-FS
X-SW
X-FB
X-DKH
DNH
X-M6H, X-M8H
X-HS
X-CC

Cartridges:

6.8/11M -

red, yellow, green

DX 76 PTR

DX 76 PTR (Siding and decking) with magazine MX 76-PTR

Fastener:

X-ENP-19 L15 MX

Piston:

X-76-P-ENP-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M - black, red, blue

Fastener:

X-ENP2K-20 L15 MX

Piston:

X-76-P-ENP2K-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M - blue, green

DX 76 PTR (Siding and decking)

Fastener:

X-ENP-19 L15

Piston:

X-76-P-ENP-PTR

Fastener guide:

X-76-F-15-PTR

Piston brake: X-76-PB-PTR

Cartridges:

6.8/18M - black, red, blue

Fastener:

X-ENP2K-20 L15

Piston:

X-76-P-ENP2K-PTR

Fastener guide:

X-76-F-15-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M – blue, green

DX 76 PTR (Siding and decking on concrete – DX-Kwik)

Fastener:

NPH2-42 L15

Fastener guide:

X-76-F-Kwik-PTR

Piston:

X-76-P-Kwik-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M - blue

DX 76 PTR (X-HVB shear connectors)

Fastener:

X-ENP-21 HVB

Connector:

X-HVB shear connectors

Fastener guide:

X-76-F-HVB-PTR

Piston:

X-76-P-HVB-PTR

Piston stop:

X-76-PB-PS

Cartridges:

6.8/18M - black, red

DX 76 PTR (Grating and chequer plate)

Grating fastener:

X-CRM8-15-12 P8

X-EM8H_P8

X-GR, X-GR RU

Chequer plate fastener

X-CRM8-15-12 P8

X-CRM8-9-12 P8

Fastener guide:

X-76-F-8-GR-PTR

(Ø 19 mm × 58 mm)

Piston:

X-76-P-8-GR-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M -

blue, yellow

For X-GR and X-GRRU:

red, blue, yellow

DX 76 PTR (Heavy duty)

Fastener:

EDS 19 - 22 P10

X-EM10H-24-12 P10

X-EM8H-15-12 FP10

X-CR M8-15-12 FP10

X-CR M8-9-12 FP10

DS27 - 37 P10

Fastener guide:

X-76-F-10-PTR

(Ø 19 mm × 58 mm)

Piston:

X-76-P-10-PTR

Piston brake:

X-76-PB-PTR

Cartridges:

6.8/18M -

black, red, blue

8/2011 2.227

DX76

DX 76 MX (Siding and decking) with magazine

Fastener:

X-ENP-19 L15 MX

Piston:

X-76-P-ENP

Cartridges:

6.8/18M - black, red, blue

Fastener:

X-ENP2K-20 L15 MX

Piston:

X-76-P-ENP2K

Cartridges:

6.8/18M -

blue, yellow, green

DX 76 F15 (Siding and decking)

Fastener:

X-ENP-19 L15

Piston:

X-76-P-ENP

Cartridges:

6.8/18M - black, red, blue

Fastener:

X-ENP2K-20 L15

Piston:

X-76-P-ENP2K

Cartridges:

6.8/18M -

blue, yellow, green

DX 76 F15 (Siding and decking on concrete - DX-Kwik)

Fastener:

NPH2-42 L15

Piston:

X-76-P-Kwik

Fastener guide:

X-76-F-Kwik

Cartridges: 6.8/18M – blue

DX 76 F15 (X-HVB shear connectors)

Fastener:

X-ENP-21 HVB

Connector:

X-HVB shear connectors

Piston:

X-76-P-HVB

Cartridges:

6.8/18M - black, red, blue

Fastener guide:

X-76-F-HVB

8/2011 2,229

DX 76 F15 (Grating and checker plate)

Grating fastener:

X-CRM8-15-12 FP10 EM8-15-14-10 FP10

Checker plate fastener

X-CRM8-15-12 FP10 X-CRM8-9-12 FP10

Fastener guide:

X-76-F-10

Piston:

X-76-P-GR

Cartridges:

6.8/18M – black, red, blue, yellow, green

DX 76 F15 (Heavy duty)

Fastener: (for nail)

EDS 19 - 27 P10

Fastener: (for stud)

X-EM10-24-14 P10

Fastener guide:

X-76-F-10

for nails and studs

Piston: (for nail)

X-76-P-10

Piston: (for stud)

X-76-P-GR

Cartridges:

6.8/18M -

black, red, blue, yellow,

green

DX-860 Tool for Decking

DX 860-ENP

Fastener:

X-ENP-19 L15 MXR

Piston:

X-76-P-ENP

Cartridges:

6.8/18M40 – black, red, blue

DX 860-HSN

Fastener:

X-EDNK22-THQ12M X-EDN19-THQ12M

Piston:

X-860-P10

Piston and piston brake spare part:

DX 860-HSN spare part pack

Cartridges:

6.8/11M40 – black, yellow

8/2011 2.231

Cartridges

Cartridge 6.8/11M10 and
6.8/11M40 ¹
(.27 caliber short)

Color code*	Power level**	Fastenir DX 36		DX 351	DX 860-HSN ¹
High precision					
brown	2 [2]	no	no	V	no
white [brown]	2 [2]	no	no	V	no
green	3 [3]	V	V	V	no
yellow	4 [4]	/	V	V	V
red	6 [5]	V	V	V	no
black [purple]	7 [6]	no	V	no	V

Cartridge 6.8/18M10 (.27 caliber long)

Color code*	Power level**	Fastening tools: DX 76 / DX 76 PTR
green	3	V
yellow	4	✓
blue	5 [4.5]	V
red	6 [5]	V
black [purple]	7 [6]	✓

Cartridge 6.8/18M40 (.27 caliber long)

Color code*	Power level**	Fastening tools: DX 860-ENP
blue	5 [4.5]	V
red	6 [5]	V
black [purple]	7 [6]	V

Cartridge 5.6/16ND (caliber .22NC)

Color code*	Power level**	Fastening tools: DX-E 72
[grey]	[1]	✓
white [brown]	2	v
green	3	v
yellow	4	v
red	6	v

6.8/18 (.27 caliber long)1

Color code*	Power level**	Fastening tools: DX 600N¹
green	3	v
yellow	4	v
red	5	V
black [purple]	7 [6]	V

^{*} Color code according to DIN 7260, in brackets e.g. [purple] according to PATMI (USA and Canada)

^{**} Power level as used on Hilti packaging. Without brackets refers to level used in Europe, in brackets e.g. [6] refers to number according to PATMI and as used in USA and Canada.

GX 100 Gas Tool for Interior Finishing and GX 100-E for Electrical Applications

GX 100

Fastener:
X-EGN 14 MX
X-GHP 18 MX
X-GHP 20 MX
X-GHP 24 MX
X-GN 20 MX
X-GN 27 MX
X-GN 32 MX
X-GN 39 MX

Energy:

GC 11 used international

GC 12 used only in USA

GX 100-E

Fastener:
X-EGN 14 MX
X-GHP 18 MX
X-GHP 20 MX
X-GHP 24 MX
X-GN 20 MX
X-GN 27 MX
X-GN 32 MX
X-GN 39 MX
X-HS MX
X-CC MX
X-HS-W MX
X-EKB MX
X-FB MX
X-DFB MX
X-ECT MX
X-ET MX
X-EKS MX
X-EMTSC

Energy:

GC 11 used international

GC 12 used only in USA

8/2011 2.233

GX 120 Gas Tool for Interior Finishing and GX 120-ME for Electrical Applications

GX 120

Fastener:
X-EGN 14 MX
X-GHP 18 MX
X-GHP 20 MX
X-GHP 24 MX
X-GN 20 MX
X-GN 27 MX
X-GN 32 MX
X-GN 39 MX

Energy:

GC 21 and GC 22

GX 120-ME

Fastener:
X-EGN 14 MX
X-GHP 18 MX
X-GHP 20 MX
X-GHP 24 MX
X-GN 20 MX
X-GN 27 MX
X-GN 32 MX
X-GN 39 MX
X-HS MX
X-CC MX
X-HS-W MX
X-EKB MX
X-FB MX
X-DFB MX
X-ECT MX
X-ET MX
X-EKS MX
X-EMTSC
X-G M6/W6

Energy:

GC 21 and GC 22

2.234 8/2011

Part 3:

Steel and metal screws

Steel and metal screws		3.1–3.167
Screws overview	3.5–3.9	
General information / screw designations	3.10	
Screws program	3.11-3.158	
Special items / sealing washers	3.159-3.160	
Screwdrivers / accessories / bits	3.161-3.165	
Tools and systems for steel and metal trade	3.166-3.167	

Product index for steel and metal screws

Carbon steel self-drilling screws							
Designation	Description	Drilling thickness mm	Screw Ø mm	Sealing washer Ø mm	Page		
S-MD51Z 4.8×19	for sheet overlaps	1.25–2.75	4.8	16	3.12		
S-MD51Z 6.3×19		1.20–3.00	6.3	16	3.15		
S-MD51LZ 4.8×38		1.20–2.75	4.8	16	3.18		
S-MD 53 Z 4.8×38		2.10–4.50	4.8	16	3.21		
S-MD 53 Z 5.5×(19, 25, 32	, 38, 50)	2.60–5.50	5.5	16	3.24		
S-MD 53 Z 6.3×(19, 25, 32	2, 38, 50)	2.60–6.00	6.3	16	3.27		
S-MD 55 Z 5.5×(38, 50, 63 S-MD 65 Z 5.5×38)	4.60–12.00 4.60–12.00	5.5 5.5	16 19	3.30		
S-MS 01 Z 4.8×20(M)	for sheet overlaps	2.5	4.8		3.33		
S-MD01Z 4.2×(13, 16) S-MD01Z 4.8×(13, 19) S-MD01Y 4.8×16 S-MD01Z(LZ) 4.8×(19M, S-MD01Z 5.5×19 S-MD01Z 6.3×19	22M)	1.20–2.50 1.20–2.75 1.20–2.75 1.20–2.75 1.20–3.00 1.20–3.00	4.2 4.8 4.8 4.8 5.5 6.3		3.39		

Designation	Drilling thickness mm	Screw Ø mm	Sealing washer Ø mm	Page
S-MD03Z 4.2×16	2.10-3.50	4.2		3.49
S-MD 03 Z 4.8×(16, 19)	2.10-4.50	4.8		
S-MD 03 Z 5.5×(19, 25, 32, 38)	2.60-5.50	5.5		
S-MD 23 Z 5.5×22	2.60-5.50	5.5		
S-MD 03 Z 6.3×(19, 25, 32, 50)	2.10-3.50	6.3		
S-MD 2310 Y 6.3×(22M, 22)	1.20-3.00	6.3		
S-MD 21 Z 5.5×25	1.20–3.00	5.5		3.59
S-MD 05Z 5.5×(38, 50, 63)	4.60-12.00	5.5		3.62
S-MD25Z 5.5×38	4.60-12.00	5.5		

Stainless steel self-drilling screws				
Designation	Drilling thickness mm	Screw Ø mm	Sealing washer Ø mm	Page
S-MD 51 S 4.8×(22, 25)	1.25-2.00	4.8	16	3.68
S-MD61S 4.8×22	1.25-2.00	4.8	19	
S-MD 51 S 5.5×(25, 32, 38, 50)	1.25-3.00	5.5	16	
S-MD 51 LS 5.5×25	1.80-4.00	5.5	16	3.73
S-MD 61 LS 5.5×25	1.80-4.00	5.5	19	
S-MD71LS 5.5×25	1.80-4.00	5.5	22	
S-MD 53 S 5.5×(25, 32, 38, 50, 63)	2.10-5.50	5.5	16	3.77
S-MD 63 S 5.5×(25, 32, 38, 50, 63)	2.10-5.50	5.5	19	
S-MD73S 5.5×(25, 32, 38, 50, 63)	2.10-5.50	5.5	22	
S-MD53S 6.3×25	2.10-6.00	6.3	16	
S-MD63S 6.3×25	2.10-6.00	6.3	19	
S-MD73S 6.3×25	2.10-6.00	6.3	22	

Designation	Drilling thickness mm	Screw Ø mm	Sealing washer Ø mm	Page
S-MD 43 S 5.5×(25, 32, 38, 50, 63)	2.10-5.50	5.5	14	3.83
S-MD55S 5.5×(45, 50, 63, 80, 100)	4.60-12.00	5.5	16	3.86
S-MD 65 S 5.5×(45, 50, 63, 80, 100)	4.60-12.00	5.5	19	
S-MD75S 5.5×(45, 50, 63, 80, 100)	4.60-12.00	5.5	22	
S-MD01S 4.8×22	1.25–2.00	4.8		3.89
S-MD01LS 5.5×25	1.80-4.00	5.5		
S-MD 03 S 5.5×(25, 32, 38, 50, 63))	2.10-5.50	5.5		
S-MD 05 S 5.5×(45, 50, 63, 80, 100)	4.60-12.00	5.5		
S-MD31PS 4.8×19	1.00-2.75	4.8	12	3.97
S-MD31PS 5.5×(22, 28, 38, 50)	1.00-3.00	5.5	12	3.102
S-MD 33 PS 5.5×(22, 28, 38, 50)	2.1–5.50	5.5	12	3.108
S-MD35PS 5.5×45	4.60–12.00	5.5	12	3.114

Carbon steel self-tapping screws				
Designation	Fastening thickness mm	Screw Ø mm	Sealing washer Ø mm	Page
S-MP53Z 6.5×(19, 25, 32, 38, 50, 63, 100)	8–89	6.5	19	3.120
S-MP52Z 6.3×(19, 25, 32, 38, 50, 63, 75, 88, 100)	10–91	6.5	19	3.123

Stainless steel self-tapping screws				
Designation	Fastening thick	Fastening thickness Screw Ø mm mm		Page
S-MP53S 6.5×(19, 25, 32, 38, 50, 63, 75,	8–164	6.5	16	3.128
88, 100, 125, 150, 175)				
S-MP63S 6.5×(19, 25, 32, 38, 50, 63, 75,	8-164	6.5	19	
88, 100, 125, 150, 175)				
S-MP73S 6.5×(19, 25, 32, 38, 50, 63, 75,	8–164	6.5	22	
88, 100, 125, 150, 175)				
<i>4011111</i>				
S-MP54S 6.3×(22, 25, 32, 38, 50, 63, 75,	13–226	6.3	16	3.132
88, 100, 125, 150, 175, 200,				
225, 250, 275)				
S-MP642S 6.3×(22, 25, 32, 38, 50, 63, 75,	13-226	6.3	19	
88, 100, 125, 150, 175, 200,				
225, 250, 275				
S-MP74S 6.3×(22, 25, 32, 38, 50, 63, 75,	13–226	6.3	22	
88, 100, 125, 150, 175, 200,				
225, 250, 275				
ammin				

Stainless steel screws for sandwich panels, with sealing washer						
Designation	Drilling thickness mm	Screw Ø mm	Sealing washer \varnothing mm	Page		
S-CD63S 5.5×(75, 85, 95, 115, 135, 155, 175, 210)	2.00-5.50	5.5	19	3.138		
S-CD73S 5.5×(75, 85, 95, 115, 135, 155, 175, 210)	2.00–5.50	5.5	22			
S-CD65 S 5.5×(90, 100, 110, 130, 150, 170, 190, 220)	3.50–12.00	5.5	19	3.142		
S-CD75 S 5.5×(90, 100, 110, 130, 150, 170, 190, 220)	3.50–12.00	5.5	22			

3.8 9/2011

Designation	Drilling thickness mm	Screw Ø mm	Sealing washer \varnothing mm	Page
S-CDW61S 6.5×(100, 110, 120, 140, 160, 180, 220, 220, 230)	≥ 50 mm timber	6.5	19	3.146
S-CDW71S 6.5×(100, 110, 120, 140, 160, 180, 220, 220, 230)	≥ 50 mm timber	6.5	22	

Coated carbon steel screws for sandwich panels						
Designation	Drilling thickness mm	Screw Ø mm	Sealing washer \varnothing mm	Page		
S-CD63C 5.5×(75, 85, 95, 115, 135, 155, 175, 210)	2.50–5.50	5.5	19	3.150		
S-CD 65 C 5.5×(90, 100, 110, 130, 150, 170, 190, 220)	3.50–12.00	5.5	19	3.153		
S-CDW61 C 6.5×(100, 110, 120, 140, 160, 180, 220, 220, 230)	≥ 50 mm timber	6.5	19	3.156		

Special items			
Designation	Outside Ø mm	Inside Ø mm	Page
S-AW stainless steel sealing washer	16	4.8, 5.5, 6,5	3.159
	19	4.8, 5.5, 6,5	
	22	4.8, 5.5, 6,5	

Screwdrivers / accessories / bits

Screw designations

5.5 x 25 M 3 Z

Screw fastening

Application

M: Metal

C: Sandwich panels W: Wood / wing tip

Insulation

D: Drywall

Function

S: Point

D: Self-drilling

P: Self-tapping

DU: Self-drillina

with undercut

T: Treadfast

Information about washers and sealing washers

0: No washer

2: Pressed-on washer

12 mm Sealing washer

4: 14 mm Sealing washer

5: 16 mm Sealing washer

6: 19 mm Sealing washer

7: 22 mm Sealing washer

8: 29 mm Sealing washer

9: BAZ Sealing washer

Dimensions

Thread outer dia. x length in mm

Further information

collated М. RAL XXXX: RAL colors

Material

Z: Galvanized carbon steel

C: Carbon steel with duplex coating

Stainless steel

Additional information

PS: Round head, stainless steel LS: Long drill point, stainless steel

LZ: Long drill point, galvanized carbon steel

ZP: Plastic-coated head ZW: Flat head, galvanized

Information about the screw point Speedy screw

1: Drilling capacity 0.75 to 2.5 mm

Self-drilling screw

1: Drilling capacity 1.0 to approx. 3.0 mm

3: Drilling capacity 2.1 to approx. 6.0 mm

5: Drilling capacity 4.6 to approx. 15.0 mm

Self-tapping screw

2: Flat thread run-out substructures approx. 1.25 mm and thicker

3: Pointed thread run-out substructure thickness up to max. 3.0 mm and for wood substructures

4: Flat thread run-out and hardened drill point substructures approx. 1.25 mm and thicker

3.10 9/2011

Carbon steel self-drilling screws

Applications

- Screws with sealing washers for fastening profile steel sheet to profile steel sheet or for fastening profile steel sheet to steel framing.
- Screws without sealing washers for framing fastenings (not exposed to weather).

Product description

The screw first drills the required hole in the part to be fastened and in the framing (A). Then the thread is cut (B).

A watertight seal is formed at the fastening when the screw with sealing washer is driven.

- The carbon steel screw is case hardened.
- The surface of the screw is galvanized. This protects the screw from corrosion and lubricates the drilling and thread-cutting operation.

Several screw programs holds an ETA (European Technical Approval). Please note the approval mark shown for each of the applicable screw programs.

All screws can be ordered with coloured heads and washers in colours according to the RAL colour chart.

Screw designations

e.g.: S-MD 51 Z 5.5 x 45 S for screw fastening

M for metal construction

D for self-drilling screw (D = drilling)

5 2 – pressed-on steel flange \emptyset 15 mm

4 – sealing washer Ø 14 mm

5 – sealing washer \emptyset 16 mm

6 - sealing washer Ø 19 mm

7 – sealing washer Ø 22 mm

0 - without sealing washer

1 1 - drill point # 1 = 1.25 up to approx. 3 mm drilling

thickness

3 - drill point # 3 = 2.1 to 6 mm drilling thickness

5 - drill point # 5 = 4.6 to 12 mm drilling thickness

Please refer to the screw program for the specific max.

drilling thickness for each screw.

Z galvanized carbon steel (Z for zinc)

5.5 x 45 screw dimensions (Ø x length)

Further designations:

S-MD51Z 4.8x19 PB15 PB 15 screw head in the colours listed in the RAL colour chart

S-MD51 LZ 4.8x38 L extended drill point

S-MD01Z4.8x19 M M collated

S-MD01 Y 4.8 x 19 Y surface galvanized and yellow chromated

S-MD 51 Z 4.8×L carbon steel self-drilling screw for sheet overlaps

Product data

General information

Material specification:

Carbon steel: case-hardened Zinc coating: ≥ 8 μm galvanized

with reduced-diameter drill point and fitted

EPDM sealing washer, Ø 16 mm.

Self-drilling screws with coloured head and sealing washer; other special colours avail-

able on request.

Fastening tools

Screwdriver: Hilti ST2500, Hilti ST1800

Drive using depth

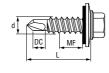
gauge set:

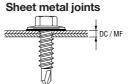
Nut set driver S-NSD 8:

Approvals

Item no. 304611

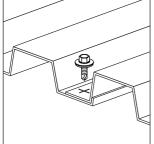
Item no. 308901

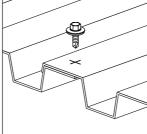

 ϵ


Dimensions

Uses:

Fastening sheet metal to sheet metal





Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 2.75 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t _l :	up to 1.25 mm	up to 2.75 mm
Tightening torque:	2 Nm	5 Nm

S235J	onent II accordi aD or Sa	ng to D	N EN 10	0025-2			
0.63	0.75	0.88	1.00	1.13	1.25	1.50	2.00

Component I steel with t _I [mm]								
S280GD or S320GD (DIN EN 10326)	Shear	force V	вк [kN]					
0.63	1.30	1.80	2.30	2.90	2.90	2.90ac	2.90ac	2.90ac
0.75	1.30	1.80	2.30	2.90	3.51	3.70ac	3.70ac	3.70a
0.88	1.30	1.80	2.30	2.90	3.51	4.10	4.80*	_
1.00	1.30	1.80	2.30	2.90	3.51	4.10	5.60	_
1.13	1.30	1.80	2.30	2.90	3.51	4.10	5.60	_
1.25	1.30	1.80	2.30	2.90	3.51	4.10	5.60	_
1.50	1.30	1.90	2.70	3.60	4.70	5.90	-	_
	Tensio	n force	N _{R,k} [k	N]				
0.50	0.43	0,54	0.70	0.81	0.97ac	1.13ac	1.40ac	1.40ac
0.55	0.55	0.68	0.89	1.02	1.23ac	1.43ac	1.77ac	1.77ac
0.63	0.80	1.00	1.30	1.50	1.80ac	2.10ac	2.60ac	2.60ac
0.75	0.80	1.00	1.30	1.50	1.80	2.10ac	2.70ac	2.70a
0.88								
0.00	0.80	1.00	1.30	1.50	1.80	2.10	2.70*	-
1.00	0.80	1.00	1.30 1.30	1.50 1.50	1.80 1.80	2.10	2.70* 2.70	- -
1.00	0.80	1.00	1.30	1.50	1.80	2.10	2.70	-

Screw selection

1.2-2.75

1.2 - 2.75

1.2-2.75

5.5

5.5

5.5

4.8x19

4.8x19

4.8x19

16


16

16

8

8

8

	side	lap a	nd er	nd ove	erlap
Sh	ear				

S-MD51Z 4.8x19 PL02

S-MD51Z 4.8x19 PL06

S-MD51Z 4.8x19 PL10

224615

224614

224613

Safety factors according to EN 1993-1-3 and CUAP 06.02/07									
	Tension	Shear							
Partial safety concept									
Partial safety factor	$\gamma_{\rm M} = 1.33$	$\gamma_{M} = 1.33$							
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-							
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$							
Global safety concept									
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$							
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$							

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw program Drilling Fastening Dimensions Sealing Head RAL colour Package Ordering Item no. thickness thickness washer contents size designation MF (dxL) Ø mm max. mm mm mm 500 S-MD51Z 4.8x19 219032 1.2 - 2.755.5 4.8x19 16 8 RAL colours available immediately from stock 1.2 - 2.755.5 4.8x19 1015 light ivory 500 S-MD51Z 4.8x19 PB15 224616 1.2-2.75 4.8x19 500 S-MD51Z 4.8x19 PF08 231397 5.5 16 8 5008 grey blue 1.2 - 2.755.5 4.8x19 16 8 7022 umbra grey 500 S-MD51Z 4.8x19 PH22 224617 1.2-2.75 5.5 S-MD51Z 4.8x19 PK12 235208 4.8x19 16 8 8012 red brown 500

9002 grey white

9010 pure white

9006 white aluminium

500

500

500

3.14 9/2011

S-MD 51Z 6.3×L carbon steel self-drilling screw

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: \geq 8 μ m galvanized

with reduced-diameter drill point and fitted

EPDM sealing washer $\!\varnothing$ 16 mm.

Coloured screws available on request.

Fastening tools:

Screwdriver: Hilti ST2500,

Drive using depth

gauge set:

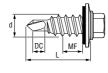
Nut set driver

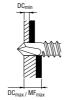
S-NSD³/₈": Approvals:

(6

Hilti ST1800

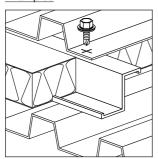
Item no. 304611


Item no. 308905


Dimensions

Uses:

Fastening sheet steel to thin steel sections and liner trays.



Applications

Examples

Load data

Design data

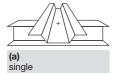
Drilling capacity Σt

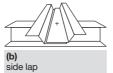
max. 3.00 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t_i: up to 1,25 mm up to 3,00 mm


Tightening torque: 4 Nm 8 Nm


•			rith t _{il} [m DIN EN	-			
0.63	0.75	0.88	1.00	1.13	1.25	1.50	2.00

Component I steel with t _I [mm] S280GD or S320GD									
(DIN EN 10326)	Shear force V _{R,k} [kN]								
0.63	1.60	2.10	2.70	3.30	3.30ac	3.30ac	3.30ac	3.30ac	
0.75	1.60	2.10	2.70	3.30	4.10	4.20ac	4.20ac	4.20*	
0.88	1.70	2.20	2.80	3.40	4.10	4.40	5.20ac	5.20*	
1.00	1.80	2.40	3.00	3.50	4.10	4.60	5.80	6.30*	
1.13	1.80	2.40	3.00	3.50	4.20	4.80	6.20	-	
1.25	1.80	2.40	3.00	3.60	4.20	5.00	6.50	-	
1.50	2.00	2.60	3.30	4.00	4.80	5.50	7.20	-	
1.75	2.00	2.60	3.30	4.00	-	-	-	-	
2.00	2.00	2.60	3.30	4.00	-	-	-	-	
	Tensio	n force	N _{R,k} [k	N]					
0.50	0.49	0.65	0.81	0.97	1.13ac	1.30ac	1.67ac	1.73ac	
0.55	0.61	0.82	1.02	1.23	1.43ac	1.64ac	2.11ac	2.18ac	
0.63	0.90	1.20	1.50	1.80	2.10ac	2.40ac	3.10ac	3.20ac	
0.75	0.90	1.20	1.50	1.80	2.10	2.40ac	3.10ac	4.00*	
0.88	0.90	1.20	1.50	1.80	2.10	2.40	3.10ac	4.60*	
1.00	0.90	1.20	1.50	1.80	2.10	2.40	3.10	4.60*	
1.13	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-	
1.25	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-	
1.50	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-	

1.75	0.90	1.20	1.50	1.80	-	-	-	-
2.00	0.90	1.20	1.50	1.80	-	-	-	-

(c) (d) side lap and end overlap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07									
	Tension	Shear							
Partial safety concept									
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$							
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-							
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$							
Global safety concept									
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$							
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$							

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw s	election								
Screw program									
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.		
1.2-3	4	6.3x19	16	3/8"	500	S-MD51Z 6.3x19	219034		

S-MD 51 LZ 4.8×L carbon steel self-drilling screw

Product data

General information

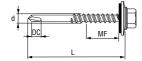
Material specification: Fastening tools

Carbon steel: case-hardened Screwdriver: Hilti ST2500, Zinc coating: \geq 8 μ m galvanized Hilti ST1800

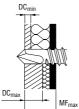
with fitted EPDM sealing washer \varnothing 16 mm
Drive using depth

and extended drill point. gauge set: Item no. 304611

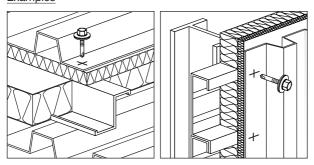
Self-drilling screws with coloured head and Nut set driver


sealing washer; other special colours avail- S-NSD 8: Item no. 308901 able on request.

Dimensions


Uses on siding:

Fastening trapezoidal profile metal sheets with intermediate insulating layer to steel sections.



Sheet metal joints

Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 2,75 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t_I: up to 1.25 mm up to 3.00 mm

Tightening torque: 4 Nm 8 Nm

•		teel with 0GD (DIN		326))		
0.63	0.75	0.88	1.00	1.13	1.25	1.50

Component I steel with t _I [mm] S280GD or S320GD							
(DIN EN 10326)	Shear	force V _R	,k [kN]				
0.63	1.40	1.40	1.90	2.40	2.70	3.00	3.00
0.75	1.40	1.70	1.90	2.40	2.70	3.30	3.30
0.88	1.40	1.70	1.90	2.40	2.70	3.30	3.30
1.00	1.40	1.70	1.90	2.40	2.70	3.30	3.30
1.13	1.40	1.70	1.90	2.40	2.70	3.30	3.30
1.25	1.40	1.70	1.90	2.40	2.70	3.30	3.30
1.50	1.40	1.70	1.90	2.40	2.70	3.30	-
	Tensio	n force l	N _{R,k} [kN]				
0.63	0.60	0.90	1.10	1.30	1.60	1.80	2.50
0.75	0.60	0.90	1.10	1.30	1.60	1.80	2.50
0.88	0.60	0.90	1.10	1.30	1.60	1.80	2.50
1.00	0.60	0.90	1.10	1.30	1.60	1.80	2.50
1.13	0.60	0.90	1.10	1.30	1.60	1.80	2.50
1.25	0.60	0.90	1.10	1.30	1.60	1.80	2.50
1.50	0.60	0.90	1.10	1.30	1.60	1.80	-

Screw selection

1.2-2.75

1.2-2.75

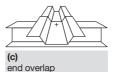
13

13


4.8 x 38

4.8x38

16


8


8

side lap

S-MD51LZ 4.8x38 PB06 258791

S-MD51LZ 4.8x38 PB10 258790

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{\rm M} = 1.33$	$\gamma_{M} = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw pr	ogram							
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	RAL colour	Package contents	Ordering designation	Item no.
1.2-2.75	13	4.8x38	16	8		250	S-MD51LZ 4.8x38	252801
RAL colour	s available	e immediat	ely from	stock				
1.2-2.75	13	4.8x38	16	8	1002 sand yellow	250	S-MD51LZ 4.8x38 PB 02	309220
1.2-2.75	13	4.8x38	16	8	1015 light ivory	250	S-MD51LZ 4.8 x 38 PB 15	258793
1.2-2.75	13	4.8x38	16	8	1019 grey beige	250	S-MD51LZ 4.8 x 38 PB 19	309227
1.2-2.75	13	4.8x38	16	8	3000 flame red	250	S-MD51LZ 4.8x38 PB00	309225
1.2-2.75	13	4.8x38	16	8	5008 grey blue	250	S-MD51LZ 4.8x38 PB08	374757
1.2-2.75	13	4.8x38	16	8	7006 beige grey	250	S-MD51LZ 4.8x38 PB06	309226
1.2-2.75	13	4.8x38	16	8	7008 khaki grey	250	S-MD51LZ 4.8x38 PB08	258795
1.2-2.75	13	4.8x38	16	8	7022 amber	250	S-MD51LZ 4.8 x 38 PB 22	258794
1.2-2.75	13	4.8x38	16	8	7032 pebble grey	250	S-MD51LZ 4.8x38 PB32	309224
1.2-2.75	13	4.8x38	16	8	8012 red brown	250	S-MD51LZ 4.8 x 38 PB 12	374756
1.2-2.75	13	4.8x38	16	8	9002 grey white	250	S-MD51LZ 4.8x38 PB 02	258792

3.20 9/2011

9010 pure white

9006 white aluminium 250

250

S-MD 53 Z 4.8×L carbon steel self-drilling screw

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: ≥ 8 µm galvanized

Ø 4.8 mm, with fitted EPDM sealing washer,

Ø 16 mm.

Self-drilling screws with coloured head and sealing washer; other special colours available on request.

Fastening tools

Screwdriver: Hilti ST2500,

Drive using depth

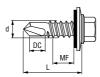
gauge set:

Nut set driver

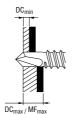
S-NSD 8: Item no. 308901

Approvals

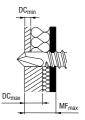
Hilti ST1800


Item no. 304611

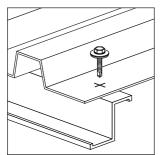
Dimensions

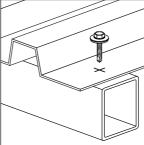

Uses:

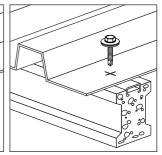
Fastening sheet metal to steel framing, with or without intermediate insulation layers.



without insulation




with insulation



Applications

Examples

Load data

Design data

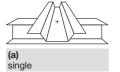
Drilling capacity Σt

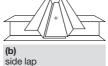
max. 4.5 mm

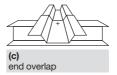
Component I

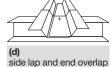
Tightening torque (recommendation)

Screw in end-stop oriented


Total thickness Σ t_!: up to 2.15 mm up to 4.5 mm Tightening torque: 2 Nm 6 Nm


Component II steel with t_{II} [mm]
S235J according to DIN EN 10025-2
S280GD or S320GD (DIN EN 10326)
1.50 2.00 2.50 3.00


steel with t _l [mm] S280GD or S320GD								
(DIN EN 10326)	Shear force V _{R,k} [kN]							
0.63	2.40ac	2.70ac	2.70ac	2.70ac				
0.75	3.00	3.50ac	3.50ac	3.90ac				
0.88	3.40	4.10	4.10	5.40				
1.00	3.70	4.70	4.70	6.60				
1.13	4.00	5.00	5.00	6.70				
1.25	4.40	5.30	5.30	6.80				
1.50	4.90	5.60	5.60	6.90				
1.75	490	5.60	5.60	_				
2.00	4.90	5.60	5.60	-				
	Tension force	N _{R,k} [kN]						
0.50	0.92ac	1.40ac	1.40ac	1.40ac				
0.55	1.16ac	1.77ac	1.77ac	1.77ac				
0.63	1.70ac	2.60ac	2.60ac	2.60ac				
0.75	1.70	2.70ac	2.70ac	3.30ac				
0.88	1.70	2.70	2.70	4.20				
1.00	1.70	2.70	2.70	5.00				
1.13	1.70	2.70	2.70	5.20				
1.25	1.70	2.70	2.70	5.20				



1.50	1.70	2.70	2.70	5.20
1.75	1.70	2.70	2.70	_
2.00	1.70	2.70	2.70	-

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{\rm M} = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw s	selection	1						
Screw p	rogram							
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	RAL colour	Package contents	Ordering designation	Item no.
2.1-4.5	5	4.8 x 19	16	8		500	S-MD53Z 4.8x19	219035
2.1-4.5	18	4.8 x 38	16	8		500	S-MD53Z4.8x38	224612
RAL colo	urs availab	le immedia	ately fro	m sto	ck			
2.1-4.5	18	4.8 x 32	16	8	7032 pebble grey	500	S-MD53Z 4.8x38 PH32	2 35224

S-MD 53 Z 5.5×L galvanized carbon steel screw

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: \geq 8 μm galvanized

with fitted EPDM sealing washer, \varnothing 16 mm.

Self-drilling screws with coloured head and sealing washer; other special colours avail-

able on request.

Fastening tools

Screwdriver: Hilti ST2500,

Drive using depth

gauge set:

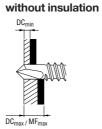
Nut set driver

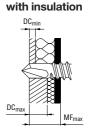
S-NSD 8: Item no. 308901

Approvals

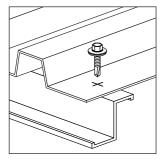
Hilti ST1800

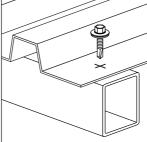
Item no. 304611

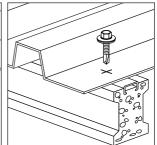

Dimensions


Uses:

Fastening sheet metal to steel framing, with or without intermediate insulation layers.







Applications

Examples

Load data

Design data

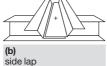
Drilling capacity Σt

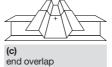
max. 6.0 mm

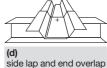
Tightening torque (recommendation)

Screw in end-stop oriented

Tightening torque: 7 Nm


Component II steel with t _{II} [mm]						
S235, S275 or S355 according to DIN EN 10025-2 S280GD, S320GD or S350GD (DIN EN 10326)						
2.00	2.50	3.00	4.00	5.00		


Component I steel with t _I [mm] S280GD, S320GD or S350Gl					
(DIN EN 10326)	Shear force	e V _{R,k} [kN]			
0.63	3.10 ac	3.10 ac	3.10 ac	3.10 abcd	3.10 abcd
0.75	3.80 ac	3.80 ac	3.80 ac	3.80 ac	3.80 ac
0.88	4.60	4.60	4.60 ac	4.60 ac	4.60 ac
1.00	5.30	5.30	5.40	5.40 a	5.40 a
1.13	5.30	5.30	6.20	6.20	_
1.25	5.30	5.30	7.60	9.50	_
1.50	6.10	6.10	9.10	9.50	_
1.75	6.10	6.10	9.10	9.50	-
2.00	7.80	7.80	9.50	9.50	-
	Tension fo	rce N _{R,k} [kN]		
0.50	1.73 ac	1.73 ac	1.73 ac	1.73 abcd	1.73 abcd
0.55	2.18 ac	2.18 ac	2.18 ac	2.18 abcd	2.18 abcd
0.63	3.09 ac	3.20 ac	3.20 ac	3.20abcd	3.20 abcd
0.75	3.09 ac	3.90 ac	3.90 ac	3.90 ac	3.90 ac
0.88	3.09	4.35	4.80 ac	4.80 a	4.80 a
1.00	3.09	4.35	5.60	5.60 a	5.60 a
1.13	3.09	4.35	5.61	6.50	-
1.25	3.09	4.35	5.61	7.20	-
1.50	3.09	4.35	5.61	7.20	-



1.75	3.09	4.35	5.61	7.20	-	
2.00	3.09	4.35	5.61	7.20	-	
+	+	> 4	+	>		-

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	γ _{GLOB} = 2.0	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw	se	lection

Screw	program
-------	---------

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	RAL colour	Package contents	Ordering designation	Item no.
2.6-6.0	4	5.5 x 19	16	8		500	S-MD53Z 5.5x19	413440
2.6-6.0	10	5.5 x 25	16	8		500	S-MD53Z5.5x25	413441
2.6-6.0	17	5.5 x 32	16	8		500	S-MD53Z5.5x32	413442
2.6-6.0	23	5.5 x 38	16	8		250	S-MD53Z5.5x38	413443
2.6-6.0	35	5.5 x 50	16	8		250	S-MD53Z5.5x50	413444

RAL color	urs availat	ole immedi	ately f	rom stoo	k			
2.6-6.0	10	5.5x25	16	8	1015 light ivory	500	S-MD53Z 5.5x25 PB15	224639
2.6-6.0	10	5.5x25	16	8	9010 pure white	500	S-MD53Z 5.5x25 RAL9010	413319
2.6-6.0	10	5.5x25	16	8	7022 amber	500	S-MD53Z 5.5x25 PH22	224640
2.6-6.0	10	5.5x25	16	8	5008 grey blue	500	S-MD53Z 5.5x25 PF08	231398
2.6-6.0	10	5.5x25	16	8	9002 grey white	500	S-MD53Z5.5x25 PL02	224638
2.6-6.0	10	5.5x25	16	8	9006 white aluminium	500	S-MD53Z 5.5x25 RAL9006	413320
2.6-6.0	10	5.5 x 25	16	8	8012 red brown	500	S-MD53Z 5.5x25 PK12	235228

S-MD 53 Z 6.3×L carbon steel self-drilling screw

Product data

General information

Material specification: Fastening tools

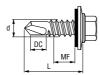
Carbon steel: case-hardened Screwdriver: Hilti ST2500, Zinc coating: ≥ 8 µm galvanized Hilti ST1800

with fitted EPDM sealing washer, \emptyset 16 mm. Drive using depth

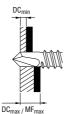
Coloured screws available on request. gauge set: Nut set driver

> S-NSD 3/8": Item no. 308905

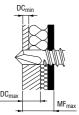
Approvals


Item no. 304611

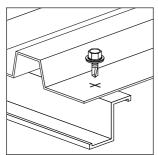
Dimensions


Uses:

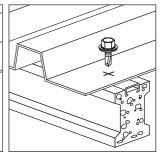
Fastening sheet metal to steel framing, with or without intermediate insulation layers.



without insulation




with insulation



Applications

Examples

3.27 9/2011

Load data

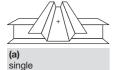
Design data

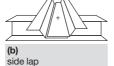
Drilling capacity Σt

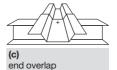
max. 6.0 mm

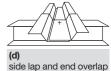
Tightening torque (recommendation)

Screw in end-stop oriented


Tightening torque: 7 Nm


Component II steel with t _{II} [mm]						
S235, S275 or S355 according to DIN EN 10025-2 S280GD, S320GD or S350GD (DIN EN 10326)						
2.00	2.50	3.00	4.00	5.00		


Component I steel with t _i [mm] S280GD, S320GD or S350GI)					
(DIN EN 10326)	N EN 10326) Shear force V _{R,k} [kN]					
0.63	3.00 ac	3.00 ac	3.00 abcd	3.00 abcd	3.00 abcd	
0.75	3.80 ac	3.80 ac	3.80 abcd	3.80 abcd	3.80 abcd	
0.88	4.60	4.80	4.80 ac	4.80 abc	4.80 abc	
1.00	5.10	5.10	5.70 ac	5.70 ac	5.70 ac	
1.13	5.50	5.50	6.80 ac	6.80 a	-	
1.25	6.10	6.10	7.90 ac	7.90 a	-	
1.50	6.40	6.40	9.00	10.30 a	-	
1.75	6.40	6.40	9.00	10.30	-	
2.00	7.80	7.80	9.40	10.50	-	
Tension force N _{R,k} [kN]						
0.50	1.78 ac	1.78 ac	1.78 abcd	1.78 abcd	1.78 abcd	
0.55	2.25 ac	2.25 ac	2.25 abcd	2.25 abcd	2.25 abcd	
0.63	3.21 ac	3.30 ac	3.30 abcd	3.30 abcd	3.30 abcd	
0.75	3.21 ac	4.00 ac	4.00 abcd	4.00 abcd	4.00 abcd	
0.88	3.21	4.62	4.80 ac	4.80 abc	4.80 abc	
1.00	3.21	4.62	5.60 ac	5.60 ac	5.60 ac	
1.13	3.21	4.62	6.03 ac	6.40 a	_	
1.25	3.21	4.62	6.03 ac	7.20 a	-	
1.50	3.21	4.62	6.03	7.20 a	-	



1.75	3.21	4.62	6.03	7.20	_
2.00	3.21	4.62	6.03	7.20	_

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$\gamma_{GLOB} = 2.0$ $N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw s	election							
Screw program								
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.	
2.6-6	4	6.3 x 19	16	3/8"	500	S-MD53Z6.3x19	413445	
2.6-6	10	6.3 x 25	16	3/8"	500	S-MD53Z6.3x25	413446	
2.6-6	17	6.3 x 32	16	3/8"	500	S-MD53Z6.3x32	413447	
2.6-6	23	6.3 x 38	16	3/8"	250	S-MD53Z6.3x38	413448	
2.6-6	35	6.3 x 50	16	3/8"	250	S-MD53Z6.3x50	413449	

S-MD 55 Z 5.5×L/S-MD 65 Z 5.5×L carbon steel self-drilling screw

Product data

General information

Material specification:

Carbon steel: case-hardened Zinc coating: ≥ 8 μm galvanized

with fitted EPDM sealing washer Ø 16, 19

mm.

Self-drilling screws with coloured head and sealing washer; other special colours availa-

ble on request.

Fastening tools:

Screwdriver: Hilti ST1800

Drive using depth

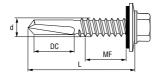
gauge set:

Nut set driver

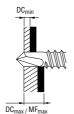
S-NSD 8: Item no. 308901

Approvals:

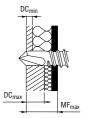
 $C \in$


Item no. 304611

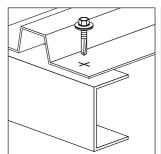
Dimensions

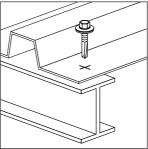

Uses:

Fastening sheet metal to steel framing, with or without intermediate insulation layers.



without insulation




with insulation

Applications

Examples

Design data

Drilling capacity Σt

max. 15.0 mm

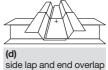
Tightening torque (recommendation)

Screw in end-stop oriented

Tightening torque: 5 Nm

Component II steel with t _{II} [mm]							
S235J according S280GD or S3	U						
4.00	5.00	6.00	> 6.00				

Component I steel with t _I [mm] S280GD or S320GD				
(DIN EN 10326)	Shear force V	/ _{R,k} [kN]		
0.63	3.30 abcd	3.30 abcd	3.30 abcd	3.30 abcd
0.75	3.90 ac	3.90 ac	3.90 abcd	3.90 abcd
0.88	4.40 ac	4.40 ac	4.40 abcd	4.40 abcd
1.00	4.90 ac	4.90 ac	4.90 ac	4.90 ac
1.13	5.40	5.40 ac	5.40 ac	5.40 ac
1.25	7.30	7.30 ac	7.30 ac	7.30 ac
1.50	7.90	7.90	7.90	7.90
1.75	7.90	7.90	7.90	7.90
2.00	9.10	9.10	9.10	9.10
	Tension force	N _{R,k} [kN]		
0.50	1.57 abcd	1.57 abcd	1.57 abcd	1.57 abcd
0.55	1.98 abcd	1.98 abcd	1.98 abcd	1.98 abcd
0.63	2.90 abcd	2.90 abcd	2.90 abcd	2.90 abcd
0.75	3.20 ac	3.20 ac	3.20 abcd	3.20 abcd
0.88	3.40 ac	3.40 ac	3.40 abcd	3.40 abcd
1.00	3.60 ac	3.60 ac	3.60 ac	3.60 ac
1.13	3.80	3.80 ac	3.80 ac	3.80 ac
1.25	4.00	4.00 ac	4.00 ac	4.00 ac
1.50	4.30	4.30	4.30	4.30



1.75	4.30	4.30	4.30	4.30
2.00	4.90	4.90	4.90	4.90
/ }- {\	/h-{\\	,	7H(\	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	γ _{GLOB} = 2.0	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	RAL colour	Package contents	Ordering designation	Item no.
4.6–15	15	5.5x38	16	8		250	S-MD55Z 5.5 x 38	227504
4.6–15	27	5.5 x 50	16	8		250	S-MD55Z 5.5x50	219046
4.6–15	40	5.5x63	16	8		100	S-MD55Z 5.5x63	219048
4.6–15	15	5.5x38	19	8		250	S-MD65Z 5.5x38	227508

RAL colours available immediately from stock								
4.6–15	15	5.5 x 38	16	8	1015 light ivory	250	S-MD55Z 5.5x38 PB15 224376	
4.6–15	15	5.5 x 38	16	8	9010 pure white	250	S-MD55Z 5.5x38 PL10 224373	
4.6–15	15	5.5 x 38	16	8	7022 amber	250	S-MD55Z 5.5x38 PH22 224377	
4.6–15	15	5.5 x 38	16	8	5008 grey blue	250	S-MD55Z 5.5x38 PF08 374758	
4.6–15	15	5.5 x 38	16	8	9002 grey white	250	S-MD55Z 5.5x38 PL02 224375	
4.6–15	15	5.5 x 38	16	8	9006 white aluminium	250	S-MD55Z 5.5 x 38 PL06 224374	
4.6–15	15	5.5 x 38	16	8	8012 red brown	250	S-MD55Z 5.5x38 PK12 374759	

S-MS01Z carbon steel self-drilling screw for sheet overlaps

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: \geq 8 μ m galvanized

Fastening tools:

Screwdriver: Hilti ST1800

Drive without depth gauge.

Cut-out controlled by torque clutch

Nut set driver S-NSD8: Item no. 308901

Stand-up tool with

screwdriver Hilti SDT 30,

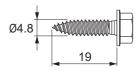
ST 1800

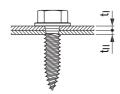
Drive without depth gauge.

Cut-out controlled by torque clutch

Bit holder S-BH 435DT: Item no. 304415 S-NSD8 DT nut set driver: Item no. 304413

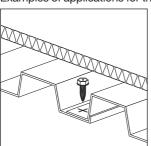
Approvals:

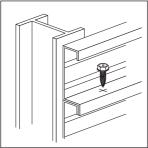


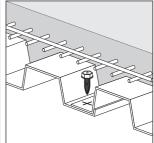

Dimensions

Uses:

Side lap connector




Applications


Examples

9/2011

Examples of applications for the S-MS01 Z:

Design data

Drilling capacity Σt

max. 2.5 mm (max. 2×1.25 mm)

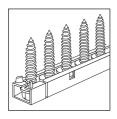
Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t_i: up to 2×0.75 mm up to 2×1.25 mm

Tightening torque: 4 Nm 8 Nm

Component II steel with t_{II} [mm]
S280GD, S320GD or S350GD (DIN EN 10326)
0.50 0.55 0.63 0.75 0.88 1.00 1.13 1.25


Component I steel with t _I [mm] S280GD, S320GD or								
S350GD (DIN EN 10326)	Shear	force V	′ R,k [kN]					
0.50	1.29	1.37	1.51	1.71	1.71	1.71	1.71	1.71
0.55	1.29	1.54	1.65	1.82	1.82	1.82	1.82	2.05
0.63	1.29	1.54	1.80	2.00	2.00	2.00	2.00	2.59
0.75	1.29	1.54	1.80	2.27	2.27	2.27	2.84	3.40
0.88	1.29	1.54	1.80	2.27	2.96	2.96	2.96	3.40
1.00	1.29	1.54	1.80	2.27	2.96	3.64	3.64	3.64
1.13	1.29	1.54	1.80	2.27	2.96	3.64	3.87	3.87
1.25	1.29	1.54	1.80	2.27	2.96	3.64	3.87	4.10
	Tensio	n force	N _{R,k} [k	:N]				
0.50	0.76	0.87	1.04	1.29	1.56	1.82	1.93	1.93
0.55	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.25
0.63	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34
0.75	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34
0.88	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34
1.00	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34
1.13	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34
1.25	0.76	0.87	1.04	1.29	1.56	1.82	2.09	2.34

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection									
Screw program									
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.			
2.5	2.5	4.8x20	8	250	S-MS01Z 4.8x20	385448			

Collated self-drilling screws can be driven using the SDT30 stand-up tool and ST1800 metal construction screwdriver.

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
2.5	2.5	4.8x20	8	250	S-MS01Z 4.8x20 M	385450

S-MS01Z 4.0 carbon steel self-tapping screw

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: ≥ 3 µm galvanized

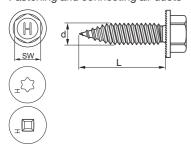
Fastening tools:
Screwdriver:

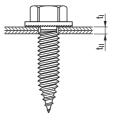
Hilti ST1800. SFH 144-A

Nut set driver:

S-NSD7 Item no. 308900 TX 20 Item no. 258138 SQ 2 Item no. 374683 Nut set driver for 1/4" Hex: Red-Ring quick release

driver Item no. 308903 Magnetic driver Item no. 374640

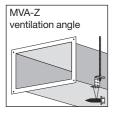

Bit holder:

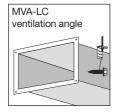

S-BH R50 M Item no. 408553 S-BH 75 M Item no. 257258 S-BH 50 M Item no. 257257

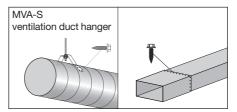
Dimensions

Uses:

Fastening and connecting air ducts






Applications

Examples

Screw for mechanical ventilation installation

Design data

Drilling capacity Σt

Fastened material not pre-drilled: max. DC = 2.0 mm

(max. 2×1.0 mm)

Fastened material pre-drilled,

drill diameter d = 4.2 mm: max. DC = 1.25 mm

Tightening torque (recommendation)

Screw in end-stop oriented

	0.50	0.63	0.75	0.88	1.00	1.25	
	Compon S280GD,		1	[mm] GD (EN 10	326)		
Tightening torque:	5 Nm						

)					
Shear fo	rce V _{R,k} [l	κN]			
1.10	1.10	1.10	1.10	1.10	-
1.10	1.70	1.70	1.70	1.70	-
1.10	1.70	2.40	2.40	2.40	-
1.10	1.70	2.40	2.90	2.90	-
1.10	1.70	2.40	2.90	3.60	-
1.10	1.70	2.40	2.90	3.60	5.00
Tension	force N _{R,I}	(kN]			
0.70	0.70	1.10	0.70	0.70	-
0.70	0.80	0.80	0.80	0.80	-
0.70	0.80	1.20	1.20	1.20	-
0.70	0.80	1.20	1.30	1.30	-
0.70	0.80	1.20	1.30	1.60	-
0.70	0.80	1.20	1.30	1.60	5.00
	Shear fo 1.10 1.10 1.10 1.10 1.10 1.10 1.10 Tension 0.70 0.70 0.70 0.70	Shear force V _{R,k} [I 1.10 1.10 1.10 1.70 1.10 1.70 1.10 1.70 1.10 1.70 1.10 1.70 Tension force N _{R,I} 0.70 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80	Shear force V _{R,k} [kN] 1.10 1.10 1.10 1.10 1.70 1.70 1.10 1.70 2.40 1.10 1.70 2.40 1.10 1.70 2.40 1.10 1.70 2.40 Tension force N _{R,k} [kN] 0.70 0.70 1.10 0.70 0.80 0.80 0.70 0.80 1.20 0.70 0.80 1.20 0.70 0.80 1.20 0.70 0.80 1.20	Shear force V _{R,k} [kN] 1.10 1.10 1.10 1.10 1.10 1.70 1.70 1.70 1.10 1.70 2.40 2.40 1.10 1.70 2.40 2.90 1.10 1.70 2.40 2.90 1.10 1.70 2.40 2.90 Tension force N _{R,k} [kN] 0.70 0.70 1.10 0.70 0.70 0.80 0.80 0.80 0.70 0.80 1.20 1.20 0.70 0.80 1.20 1.30 0.70 0.80 1.20 1.30	Shear force V _{R,k} [kN] 1.10 1.10 1.10 1.10 1.10 1.10 1.70 1.70 1.70 1.70 1.10 1.70 2.40 2.40 2.40 1.10 1.70 2.40 2.90 2.90 1.10 1.70 2.40 2.90 3.60 1.10 1.70 2.40 2.90 3.60 Tension force N _{R,k} [kN] 0.70 0.70 1.10 0.70 0.70 0.70 0.80 0.80 0.80 0.80 0.70 0.80 1.20 1.20 1.20 0.70 0.80 1.20 1.30 1.30 0.70 0.80 1.20 1.30 1.60

Note: It has to be ensured, that the screws will not be overwind while setting.

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness	Fastening thickness	Dimensions	Head size	Package	Ordering	Item no.
DC mm	MF max. mm	(dxL) mm	AF	contents	designation	itemino.
2.0	2.0	4.0 x 13	7	750	S-MS 01 Z 4.0x 13 HEX	406471
2.0	2.0	4.0 x 13	PPH*/oval	1000	S-MS 01 Z 4.0x 13 TX	406472
2.0	2.0	4.0 x 13	PPH*/oval	1000	S-MS01Z4.0x13SQ	406473
2.0	2.0	4.0 x 13	7	2500	S-MS01Z4.0x13 HEX	416184
2.0	2.0	4.0 x 13	1/4"	1000	S-MS01Z8-18x1/2 HW	H 406474
2.0	2.0	4.0 x 13	1/4"	10000	S-MS01Z8-18x1/2 HW	H 418613

^{*)} Phillips Pan Head

S-MD 01 Z, S-MD 01Y carbon steel selfdrilling screw

Product data

General information

Material specification:

Carbon steel: case-hardened

S-MD01 Z: Zinc coating: \geq 8 μ m galvanized

S-MD01Y: Zinc coating: \geq 8 μ m galvanized

and vellow chromated

Fastening tools

Screwdriver: Hilti ST1800

Torque settings $\emptyset 4.2 = 1-3$

 \emptyset 4.8 = 3- 5

 \emptyset 5.5 = 6-8

Ø 6.3 = 8-10

Drive without depth gauge.

Cut-out controlled by torque clutch

Nut set driver:

S-MD01Z4.2×L S-NSD7

Item no. 308900

S-MD01Z 4.8x19 S-NSD8

Item no. 308901

S-MD017 6.3 x 19 S-NSD3/8"

Item no. 308905

Dimensions

Uses:

Overlap joints in load-bearing (decking) sheets not exposed to the weather.

Fastening liner trays, web joints.

Sheet metal joints

Stand-up tool with

screwdriver Hilti SDT 30,

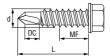
ST 1800

Torque settings:

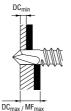
Ø 4.8 = 3−5

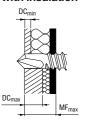
Ø 5.5 = 6-8

Drive without depth gauge.

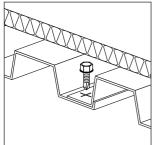

Cut-out controlled by torque clutch

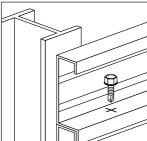
Bit holder S-BH 435DT: Item no. 304415 S-NS D8 nut set driver: Item no. 304413

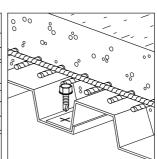

Approvals:

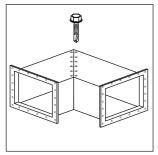


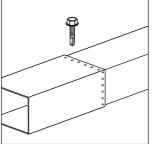
without insulation


with insulation






Applications


Examples

Design data

Drilling capacity Σt

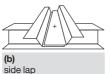
max. 2.5 mm

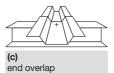
Tightening torque (recommendation)

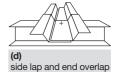
Screw in end-stop oriented

Total thickness Σ t_I: up to 1.25 mm up to 2.50 mm

Tightening torque: 2 Nm 4 Nm


Component II steel with t_{II} [mm]
S235J according to DIN EN 10025-2
S280GD or S320GD (DIN EN 10326)
0,63 0,75 0,88 1,00 1,13 1,25 1,50


Component I steel with t _I [mm] S280GD or S320GD							
(DIN EN 10326)	Shear f	orce V _{R,k}	[kN]				
0.63	1.50	2.00	2.50	2.60	2.60 ac	2.60 ac	2.60 a
0.75	1.70	2.10	2.60	3.00	3.60	4.00	4.00
0.88	1.80	2.20	2.80	3.30	4.00	4.50	4.50
1.00	1.90	2.40	3.00	3.60	4.30	5.00	5.00
1.13	1.90	2.40	3.00	3.60	4.30	5.00	-
1.25	1.90	2.40	3.00	3.60	4.30	5.00	-
1.50	1.90	2.40	3.00	3.60	-	-	-
	Tension	force N	R,k [kN]				
0.63	0.90	1.20	1.40	1.40	1.40 ac	1.40 ac	1.40 a
0.75	0.90	1.20	1.40	1.70	1.90	2.00	2.00
0.88	0.90	1.20	1.40	1.70	1.90	2.20	2.70
1.00	0.90	1.20	1.40	1.70	1.90	2.20	2.80
1.13	0.90	1.20	1.40	1.70	1.90	2.20	-
1.25	0.90	1.20	1.40	1.70	1.90	2.20	-
1.50	0.90	1.20	1.40	1.70	-	-	-



single

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	γ _{GLOB} = 2.0	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection								
Screw pro	gram							
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.		
1.2-2.50	4.5	4.2 x 13	7	1000	S-MD01Z4.2x13	224500		
1.2-2.50	7.5	4.2 x 16	7	1000	S-MD01Z4.2x16	010405		

Design data

Drilling capacity Σt

max. 2.75 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t_i: up to 1.25 mm up to 2.75 mm

Tightening torque: 2 Nm 5 Nm

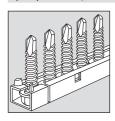
Component II steel with t_{II} [mm]
S235J according to DIN EN 10025-2
S280GD or S320GD (DIN EN 10326)
0,63 0,75 0,88 1,00 1,13 1,25 1,50 2,00

Component I steel with t _l [mm] S280GD or S320GD								
(DIN EN 10326)	Shear f	orce V _R	, k [kN]					
0.63	1.40	1.80	2.10	2.40	2.70	3.00 ac	3.60 ac	3.60 ac
0.75	1.40	1.90	2.30	2.70	3.10	3.50	4.40	4.40 a
0.88	1.40	1.90	2.40	2.90	3.30	3.90	5.10	-
1.00	1.40	1.90	2.40	3.00	3.60	4.30	5.80	-
1.13	1.30	1.90	2.40	3.00	3.60	4.30	5.80	-
1.25	1.40	1.90	2.40	3.00	3.60	4.30	5.80	-
1.50	1.40	2.00	2.70	3.50	4.40	5.40	-	-
	Tensio	n force N	NR,k [kN]					
0.63	0.80	1.00	1.30	1.40	1.40	1.40 ac	1.40 ac	1.40 ac
0.75	0.80	1.00	1.30	1.50	1.80	2.00	2.00	2.00 a
0.88	0.80	1.00	1.30	1.50	1.80	2.10	2.70	_
1.00	0.80	1.00	1.30	1.50	1.80	2.10	2.70	_
1.13	0.80	1.00	1.30	1.50	1.80	2.10	2.70	-
1.25	0.80	1.00	1.30	1.50	1.80	2.10	2.70	_
1.50	0.80	1.00	1.30	1.50	1.80	2.10	-	-

side lap and end overlap

carety ractors according to Err rocc ? Carra Cora Cora Cora							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.


Screw selection

Screw program - for sheet overlaps (with reduced drill point diameter)

Drilling thickness DC mm	Fastening thickness MF max. mm	-	Head size AF	Package contents	Ordering designation	Item no.
1 2-2 75	8.5	4 8x19	8	500	S-MD017 4 8x19	219557

Screw program - Mechanical and Electrical

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
1,2-2,75	3,5	4,8 x 13	8	1000	S-MD01Z4.8x13	224501
1,2-2,75	6,5	4,8x16	8	500	S-MD01Y 4.8x16	257732

Collated self-drilling screws can be driven using the SDT25 stand-up tool and ST1800 metal construction screwdriver.

Screw program - for sheet overlaps (with reduced drill point diameter)

			`		,	
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
1.2-2.75	8.5	4.8x19	8	250	S-MD01Z 4.8x19M	378978
1.2-2.75	7	4.8x22	8	250	S-MD01LZ 4.8x22M	284488

3.44 9/2011

Design data

Drilling capacity Σt

max. 3.00 mm

Tightening torque (recommendation)

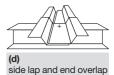
Screw in end-stop oriented

Total thickness Σ t_i: up to 1.25 mm up to 3.00 mm

Tightening torque: 3 Nm 6 Nm

Component II steel with t_{II} [mm]
S235J according to DIN EN 10025-2
S280GD or S320GD (DIN EN 10326)
0,63 0,75 0,88 1,00 1,13 1,25 1,50 2,00

Component I steel with t _I [mm] S280GD or S320GD								
(DIN EN 10326)	Shear f	orce V _R	, k [kN]					
0.63	1.50	1.80	2.00	2.10	2.30	2.40	2.60 ac	2.60 ac
0.75	1.60	2.00	2.50	2.90	3.40	3.80	3.80 ac	3.80 a
0.88	1.70	2.10	2.60	3.00	3.50	4.00	4.50	5.10
1.00	1.90	2.30	2.80	3.20	3.70	4.20	5.20	5.20
1.13	2.70	3.10	3.60	3.90	4.40	5.10	5.90	-
1.25	3.50	3.90	4.30	4.60	5.00	6.00	6.60	-
1.50	3.50	3.90	4.30	4.60	5.60	6.00	6.60	-
1.75	3.50	3.90	4.30	4.60	-	-	-	-
2.00	3.50	3.90	4.30	4.60	-	-	-	-
	Tensio	n force N	N _{R,k} [kN]					
0.63	0.90	1.20	1.50	1.70	1.70	1.70	1.70 ac	1.70 ac
0.75	0.90	1.20	1.50	1.80	2.10	2.30	2.30 ac	2.30 a
0.88	0.90	1.20	1.50	1.80	2.10	2.40	2.90	2.90
1.00	0.90	1.20	1.50	1.80	2.10	2.40	3.10	3.50
1.13	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-
1.25	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-
1.50	0.90	1.20	1.50	1.80	2.10	2.40	3.10	-
1.75	0.90	1.20	1.50	1.80	-	-	-	-
2.00	0.90	1.20	1.50	1.80	-	-	-	-



single

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{\rm M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection							
Screw program							
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.	
1.2-3	7.5	5.5x19	8	500	S-MD01Z 5.5x19	219558	

3.46 9/2011

Design data

Drilling capacity Σt

max. 3.00 mm

Tightening torque (recommendation)

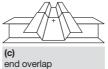
Screw in end-stop oriented

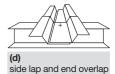
Total thickness Σ t_i: up to 1.25 mm up to 3.00 mm

Tightening torque: 3 Nm 6 Nm

Component II steel with t_{II} [mm]
S235J according to DIN EN 10025-2
S280GD or S320GD (DIN EN 10326)
0.63 0.75 0.88 1.00 1.13 1.25 1.50 2.00

Component I steel with t_l [mm] S280GD or S320GD (DIN EN 10326) Shear force V_{R.k} [kN] 0.63 1.50 2.00 2.50 2.90 3.50 3.70 ac 3.70 ac 3.70 ac 0.75 1.90 2.30 2.80 3.30 3.80 4.30 4.80 ac 4.80 ac 0.88 2.00 2.40 2.90 3.30 3.80 4.30 5.10 6.00 a 1.00 7.20 2.10 2.50 3.00 3.40 3.90 4.40 5.40 1.13 2.10 2.50 3.10 3.60 4.20 4.80 6.00 1.25 2.10 2.60 3.30 3.90 4.60 5.20 6.70 1.50 3.30 2.10 2.60 3.90 4.60 5.20 6.70 1.75 2.60 3.30 3.90 2.10 2.00 2.10 2.60 3.30 3.90 Tension force N_{B,k} [kN] 0.63 0.90 1.20 1.50 1.80 1.90 1.90 ac 1.90 ac 1.90 ac 0.75 1.20 2.40 ac 2.40 ac 0.90 1.50 1.80 2.10 2.40 0.88 0.90 1.20 1.50 1.80 2.10 2.40 3.10 3.40 a 1.00 0.90 1.20 1.50 2.10 2.40 3.10 4.30 1.80 1.13 0.90 1.20 1.50 1.80 2.10 2.40 3.10 1.25 0.90 1.20 1.50 1.80 2.10 2.40 3.10 1.50 0.90 1.20 1.50 1.80 2.10 2.40 3.10 1.75 0.90 1.20 1.50 1.80 2.00 0.90 1.20 1.50 1.80





side lap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	γ _{GLOB} = 2.0	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection							
Screw program							
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.	
1.2-3	7	6.3x19	3/8"	500	S-MD01Z 6.3x19	219559	

3.48 9/2011

S-MD 03 Z, S-MD 23 Z, S-MD 23 10 Y carbon steel self-drilling screw for sheet overlaps

Product data

General information

Material specification:

Carbon steel: case-hardened

S-MD03Z: Zinc coating \ge 8 μ m galvanized S-MD23Z: Zinc coating \ge 8 μ m galvanized,

with pressed-on flange.

S-MD2310 Y: Zinc coating \geq 8 μm galvanized

and yellow chromated, case-hardened, with

pressed-on flange.

Fastening tools:

Screwdriver: Hilti ST1800

Torque settings: $\emptyset 4.2 = 1-3$

 \emptyset 4.8 = 3- 5

 \emptyset 5.5 = 6-8

Ø 6.3 = 8-10

Drive without depth gauge.

Cut-out controlled by torque clutch

Nut set driver:

S-MD03Z4.2x16 + S-NSD7

S-MD 03 7 4.8x1 Item no. 308900

S-MD03Z5.5x25 + S-NSD8

S-MD23Z 5.5x22 + Item no. 308901

S-MD2310Y 6.3x22M

Stand-up tool with

screwdriver Hilti SDT 30,

ST 1800

Torque settings: \emptyset 4.8 = 3–5

 \emptyset 5.5 = 6–8

Drive without depth gauge.

Cut-out controlled by torque clutch

Bit holder S-BH 435DT: Item no. 304415

Nut set driver:

S-MD03Z S-NS D8

Item no. 304413

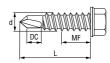
S-MD23Z + S-NSD10 DT

S-MD2310Y 6.3x22M Item no. 284485

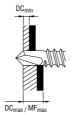
Approvals:

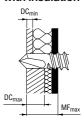
((

Dimensions


Uses:

Overlap joints in load-bearing (decking) sheets not exposed to the weather. Fastening liner trays, web joints.


Sheet metal joints



without insulation


with insulation

Applications

Examples

Design data

Drilling capacity Σt

max. 3.5 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t _i :	up to 2.65 mm	up to 6.00 mm	1			
Tightening torque:	2 Nm	4 Nm				
	Component II steel with t _{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)					
	1.25	1.50	2.00			

Component I steel with t ₁ [mm] S280GD or S320GD (DIN EN 10326)	Shear force \	/ R.k [kN]	
0.63	2.20	2.40	2.40
0.75	2.40	2.70	3.20
0.88	2.60	2.90	3.30
1.00	2.70	3.20	3.70
1.13	2.70	3.20	3.70
1.25	2.70	3.20	3.70
	Tension force	N _{R,k} [kN]	
0.63	1.00	1.60	2.00
0.75	1.00	1.60	2.30
0.88	1.00	1.60	2.60
1.00	1.00	1.60	2.60
1.13	1.00	1.60	2.60
1.25	1.00	1.60	2.60

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

 $^{^*}$ Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection								
Screw program								
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.		
2.1-3.50	7	4.2 x 16	7	1000	S-MD03Z4.2x16	219013		

Design data

Drilling capacity Σt

max. 4,5 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σ t_|: up to 2.15 mm up to 4.50 mm Tightening torque: 2 Nm 6 Nm

Component II steel with t_{II} [mm] S235J according to DIN EN 10025-2

S280GD or S320GD (DIN EN 10326)

1.50 2.00 2.50 3-00

Component I steel with t _I [mm] S280GD or S320GD				
(DIN EN 10326)	Shear for	ce V _{R,k} [kN]		
0.63	2.30	2.70 ac	2.70 ac	2.70 ac
0.75	2.30	3.00	3.00	3.80 ac
0.88	2.60	3.50	3.50	4.90
1.00	2.90	4.00	4.00	6.00
1.13	3.50	4.60	4.60	6.60
1.25	4.10	5.20	5.20	7.10
1.50	5.20	6.00	6.00	7.30
1.75	5.20	6.00	6.00	_
2.00	5,20	6.00	6.00	-
	Tension f	orce N _{R,k} [kN]		
0.63	1.60	1.60	1.60 ac	1.60 ac
0.75	1.60	2.20	2.20	2.20 ac
0.88	1.60	2.40	2.40	3.00
1.00	1.60	2.40	2.40	3.90
1.13	1.60	2.40	2.40	4.10
1.25	1.60	2.40	2.40	4.10
1.50	1.60	2.40	2.40	4.10
1.75	1.60	2.40	2.40	-
2.00	1.60	2.40	2.40	-
				2.50

(a) single

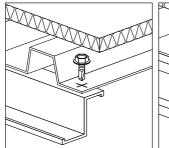
(b)	
side lap	

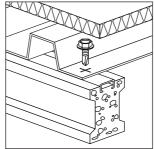
(c) end overlap

side lap and end overlap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07				
	Tension	Shear		
Partial safety concept				
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$		
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-		
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$		
Global safety concept				
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$		
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$		

 $^{^{\}star}$ Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.


Screw sele	ection					
Screw prog	ıram					
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
2.1-4.50	7	4.8 x 16	8	500	S-MD03Z4.8x16	219015
2.1-4.50	10	4.8 x 19	8	500	S-MD03Z4.8x19	219016


3.54 9/2011

Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 6.0 mm

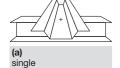
Tightening torque (recommendation)

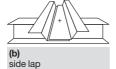
Screw in end-stop oriented

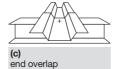
Tightening torque: 7 Nm

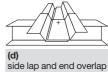
Component II steel with t_{II} [mm] S235J according to DIN EN 10025-2

S280GD, S320GD or S350GD (DIN EN 10326)


2.00 2.50 3.00 4.00 5.00


Component I steel with t_I [mm] S280GD, S320GD or S350GD (DIN EN 10326) Shear force V_{R,k} [kN] 0.63 2.60 ac 2.60 ac 2.60 ac 2.60 ac 2.60 ac 0.75 3.70 ac 3.70 ac 3.70 ac 3.70 ac 3.70 ac 0.88 4.50 5.00 ac 4.50 5.00 ac 5.00 ac 1.00 4.50 4.50 6.50 ac 6.50 ac 6.50 ac 1.13 4.90 4.90 7.00 7.90 a 1.25 5.30 5.30 7.40 9.30 1.50 6.20 6.20 8.30 9.50 1.75 6.20 6.20 8.30 9.50 2.00 7.80 7.80 9.40 9.50


9/2011



	Tension force N _{R,k} [kN]				
0.63	1.70 ac	1.70 ac	1.70 ac	1.70 ac	1.70 ac
0.75	2.20 ac	2.20 ac	2.20 ac	2.20 ac	2.20 ac
0.88	2.90	2.90	2.90 ac	2.90 ac	2.90 ac
1.00	2.90	3.50	3.50 ac	3.50 a	3.50 a
1.13	2.90	4.30	4.30	4.30	-
1.25	2.90	4.35	5.10	5.10	_
1.50	2.90	4.35	5.61	6.90	-
1.75	2.90	4.35	5.61	6.90	_
2.00	2.90	4.35	5.61	6.90	-

Safety factors according to EN 1993-1-3 and CUAP 06.02/07				
	Tension	Shear		
Partial safety concept				
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$		
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-		
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$		
Global safety concept				
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$		
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$		

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Pack conte		Ordering designation	Item no.
2.6-6.0	6	5.5 x 19	8	500	S-I	MD03Z 5.5x19	413415
2.6-6.0	9	5.5 x 22	8	500	S-I	MD03Z 5.5x22	413416
2.6-6.0	12	5.5 x 25	8	500	S-I	MD03Z 5.5x25 *)	413417
2.6-6.0	19	5.5 x 32	8	500	S-I	MD03Z5.5x32	413419
2.6-6.0	25	5.5 x 38	8	500	S-I	MD03Z5.5x38	413420
2.6-6.0	37	5.5 x 50	8	500	S-I	MD03Z5.5x50	414293
2.6-6.0	10	5.5 x 22	8	500	S-I	MD23Z 5.5x22	413427
2.6-6.0	10	5.5 x 22	8	500	S-I	MD23Z 5.5x22	413428

^{*)} Screw for sheet overlaps with reduced drill point diameter

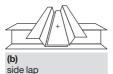
Design data

Drilling capacity Σt

max. 6.0 mm


Tightening torque (recommendation)

Screw in end-stop oriented


Tightening torque:	7 Nm				
	S235, S2	272 or S355	with t _{ll} [mm] according to r S350GD (D		
	2.00	2.50	3.00	4.00	5.00

Component I steel with t _I [mm]					
S280GD, S320GD or S350GE)				
(DIN EN 10326)	Shear force	e V _{R,k} [kN]			
0.63	3.10 ac	3.10 ac	3.10 abcd	3.10 abcd	3.10 abcd
0.75	4.20 ac	4.20 ac	4.20 abcd	4.20 abcd	4.20 abcd
0.88	5.40 ac	5.40 ac	5.40 ac	5.40 abcd	5.40 abcd
1.00	5.60	5.60	6.60 ac	6.60 ac	6.60 ac
1.13	5.70	5.70	7.80	8.00 ac	-
1.25	5.90	5.90	9.00	9.56 ac	-
1.50	7.00	7.00	9.70	10.00	-
1.75	7.00	7.00	9.70	10.00	-
2.00	7.00	7.00	9.70	10.00	-
	Tension for	rce N _{R,k} [kN]		
0.63	1.90 ac	1.90 ac	1.90 abcd	1.90 abcd	1.90 abcd
0.75	2.60 ac	2.60 ac	2.60 abcd	2.60 abcd	2.60 abcd
0.88	3.21 ac	3.40 ac	3.40 ac	3.40 abcd	3.40 abcd
1.00	3.21	4.30	4.30 ac	4.30 ac	4.30 ac
1.13	3.21	4.62	5.30	5.30 ac	-
1.25	3.21	4.62	6.03	6.40 ac	-
1.50	3.21	4.62	6.03	6.90	-
1.75	3.21	4.62	6.03	6.90	-
2.00	3.21	4.62	6.03	7.20	-

single

end overlap side lap and end overlap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07			
	Tension	Shear	
Partial safety concept			
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$	
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-	
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$	
Global safety concept			
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$	
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$	

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program	Scrow	nrogram
---------------	-------	---------

Sciew prog	Iaiii					
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
2.6-6.00	6	6.3 x 19	3/8"	500	S-MD03Z 6.3x19	413421
2.6-6.00	9	6.3x22	3/8"	500	S-MD03Z 6.3x22	413422
2.6-6.00	12	6.3x25	3/8"	500	S-MD03Z 6.3x25	413423
2.6-6.00	19	6.3 x 32	3/8"	500	S-MD03Z 6.3x32	413424
2.6-6.00	25	6.3x38	3/8"	500	S-MD03Z 6.3x38	414295
2.6-6.00	37	6.3x50	3/8"	250	S-MD03Z 6.3x50	413425
2.6-6.00	57	6.3x70	3/8"	250	S-MD03Z 6.3x70	413426
2.6-6.00	9	6.3x22	10	200	S-MD23 Z 6.3x22M	413431
2.6-6.00	6	6.3 x 19	10	500	S-MD23Z 6.3x19	413429
2.6-6.00	9	6.3x22	10	500	S-MD23Z 6.3x22	413430
2.6-6.00	12	6.3x25	10	500	S-MD23Z 6.3x25	413432
2.6-6.00	37	6.3x55	10	250	S-MD23Z 6.3x50	413433

S-MD 21 Z carbon steel self-drilling screws

Product data

General information

Material specification:

Carbon steel: case-hardened

Zinc coating: \geq 8 μm galvanized

with pressed-on flange.

Fastening tools

Screwdriver: Hilti ST1800

Torque settings: 6–8

Drive without depth gauge.

Cut-out controlled by torque clutch.

Nut set driver: S-NSD8

Item no. 308901 S-NSD10

Item no. 308902

Stand-up tool with

screwdriver Hilti SDT 25,

ST 1800

Torque settings: \emptyset 6.3 = 8–10

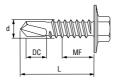
Drive without depth gauge.

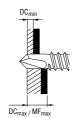
Cut-out controlled by torque clutch.

Bit holder: S-BH 435DT Item no. 304415

Nut set driver: S-NSD 10 DT

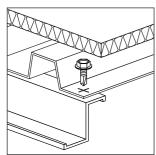
Item no. 284485

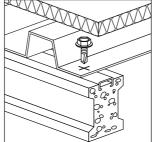

Dimensions


Uses:

Fastening supporting decking sheets to steel framing.

Screw with pressed-on flange, particularly suitable for highly-stressed fastenings, e.g. roofing sheets on insulated (built-up) roofs.





Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 3.0 mm

Tightening torque (recommendation)

Screw in end-stop oriented

Total thickness Σt_l :	up to 1.25 mm	up to 3.00 mm
Tightening torque:	4 Nm	8 Nm
	Component II ste S280GD or S320	eel with t _{II} [mm] GD (DIN EN 10326)
	1.50	2.00

Component I			
steel with t _l [mm]			
S280GD or S320GD			
(DIN EN 10326)	Shear force V _{R,k} [kN]		
0.63	2.20	2.20	
0.75	2.20	3.80	
0.88	2.20	4.20	
1.00	2.20	4.20	
1.13	2.20	4.20	
1.25	2.20	4.20	

	Tension force N _{R,k} [kN]		
0.63	1.50	1.50	
0.75	1.50	2.20	
0.88	1.50	2.80	
1.00	1.50	3.60	
1.13	1.50	3.60	
1.25	1.50	3.60	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection						
Screw program						
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
1.2-3	15	5.5 x 25	8	500	S-MD21Z5.5x25	234588

S-MD 05 Z, S-MD 25 Z carbon steel self-drilling screws

Product data

General information -MD05Z

Material specification:

Carbon steel: case-hardened Zinc coating: ≥ 8 μm galvanized

Fastening tools

Screwdriver: Hilti ST1800

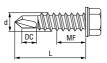
Torque settings: 8–10 Drive without depth gauge.

Cut-out controlled by torque clutch.

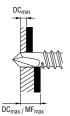
Nut set driver: S-NSD8

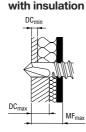
Item no. 308901

Approvals:



Dimensions S-MD05Z


Uses:


Fastening steel sections and sheet steel to steel framing, with or without insulating material.

without insulation

General information S-MD25Z

Material specification:

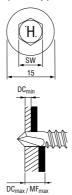
galvanized, case-hardened, with pressed-on flange.

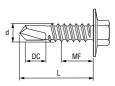
Fastening tools

Screwdriver: Hilti ST1800

Torque settings: 8–10 Drive without depth gauge.

Cut-out controlled by torque clutch.

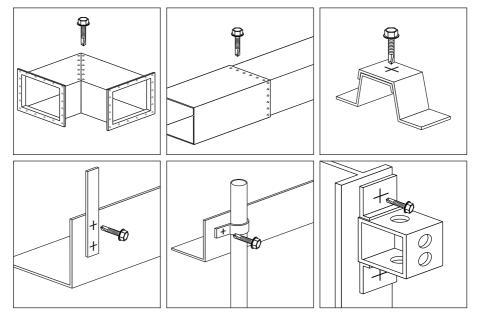

Nut set driver: S-NSD

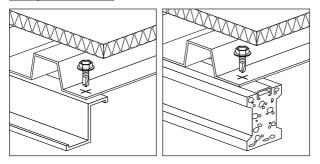

Item no. 308901 S-NSD10 Item no. 308902

Dimensions S-MD25Z

Uses:

Fastening supporting decking sheets to steel framing. Screw with pressed-on flange, particularly suitable for highly-stressed fastenings, e.g. roofing sheets on insulated (built-up) roofs.




Applications

Examples: S-MD05Z

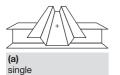
Applications

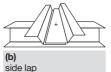
Examples: S-MD25Z

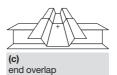
Design data

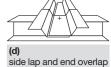
Drilling capacity Σt

max. 15.00 mm


Tightening torque (recommendation)


Screw in end-stop oriented


	S280GD or S320GD (DIN EN 10326) 4.00 5.00 6.00 > 6.00				
	S235J according to DIN EN 10025-2				
	Component II steel with t _{II} [mm]				
Tightening torque:	5 Nm				


Component I steel with t _I [mm] S280GD or S320GD (DIN EN 10326)	Shear force V	/r.,k [kN]			
0.63	2.70 abcd	2.70 abcd	2.70 abcd	2.70 abcd	
0.75	3.40 abcd	3.40 abcd	3.40 abcd	3.4 abcd0	
0.88	4.20 ac	4.20 ac	4.20 ac	4.20 ac	
1.00	4.90 ac	4.90 ac	4.90 ac	4.90 ac	
1.13	5.70 ac	5.70 ac	5.70 ac	5.70 ac	
1.25	6.50	6.50	6.50	6.50	
1.50	7.60	7.60	7.60	7.60	
1.75	7.60	7.60	7.60	7.60	
2.00	7.60	7.60	7.60	7.60	
	Tension force N _{R,k} [kN]				
0.63	1.50 abcd	1.50 abcd	1.50 abcd	1.50 abcd	
0.75	1.80 abcd	1.80 abcd	1.80 abcd	1.80 abcd	
0.88	2.10 ac	2.10 ac	2.10 ac	2.10 ac	
1.00	2.40 ac	2.40 ac	2.40 ac	2.40 ac	
1.13	2.70 ac	2.70 ac	2.70 ac	2.70 ac	
1.25	3.00	3.00	3.00	3.00	
1.50	3.60	3.60	3.60	3.60	
1.75	3.60	3.60	3.60	3.60	
2.00	4.80	4.80	4.80	4.80	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_M = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection										
Screw prog	ıram									
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.				
4.6-15.00	18	5.5 x 38	8	250	S-MD05Z5.5x38	219030				
4.6-15.00	30	5.5x50	8	250	S-MD05Z5.5x50	219028				
4.6-15.00	43	5.5 x 63	8	250	S-MD05Z5.5x63	219031				
4.6-15.00	18	5.5 x 38	8	500	S-MD25Z5.5x38	234598				

Stainless steel self-drilling screws

Applications

- Stainless steel screws with sealing washers for fastening profile steel sheet to profile steel sheet or for fastening profile steel sheet to steel framing.
- Fastening profile aluminium sheet to profile aluminium sheet or for fastening profile aluminium sheet to steel framing.
- Screws without sealing washers for framing fastenings (not exposed to weather).

Product description

The screw is made from two different materials:

Stainless steel (part B) and hardened carbon steel (part A)

The drill point and thread start are made from hardened carbon steel. This ensures trouble-free screw fastening even in the hardest construction steel. The screw first drills the required hole in the part to be fastened and in

the framing (A). Then the thread is cut (B).

A watertight seal is formed at the fastening when the screw with sealing washer is driven. The surface of the screw is galvanized. This protects the screw from corrosion and lubricates the drilling and thread-cutting operation.

Several screw programs holds an ETA (European Technical Approval).

Please note the approval mark shown for each of the applicable screw programs.

ETA-10/018

All screws can be ordered with coloured heads and washers in colours according to the RAL colour chart.

Screw designations

Screw designations		
e.g.: S-MD 51 S 5.5x45	S	for screw fastening
	M	for metal construction
	D	for self-drilling screw
	5	2 – pressed-on steel flange Ø 15 mm
		4 – sealing washer Ø 14 mm
		5 – sealing washer Ø 16 mm
		6 – sealing washer Ø 19 mm
		7 – sealing washer Ø 22 mm
		0 – without sealing washer
	1	1 – drill point # 1 = 1.25 to 4 mm drilling thickness
		3 – drill point # 3 = 2.1 to 6 mm drilling thickness
		5 – drill point # 5 = 4.6 to 12 mm drilling thickness
		Please refer to the screw program for the specific max.
		drilling thickness for each screw.
	S	stainless steel 1.4301 (S for stainless steel)
	5.5 x 45	screw dimensions (Ø x length)
		· · · · · · · · · · · · · · · · · · ·

Further designations:

S-MD51Z4.8x19 PB15 PB15 screw head in the colours listed in the RAL colour chart

S-MD51 LS 5.5 x 25 L extended drill point

S-MD01Z4.8x19 M M collated

S-MD 51 S 4.8×L + 5.5×L/S-MD 61 S 4.8×L stainless steel self-drilling screw

Product data

General information

Material specification: made from A2 (AISI 304) material,

with hardened carbon steel drill point and thread start, reduced-diameter drill point for higher pull-out values and fitted EPDM

sealing washer \varnothing 16 or 19 mm.

Coloured screws available on request.

Fastening tools

Screwdriver: Hilti ST2500,

Drive using depth

gauge set:

Nut set driver

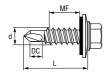
S-NSD 8:

Item no. 304611

Hilti ST 1800

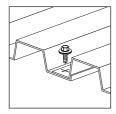
Item no. 308901

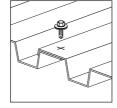
Approvals:

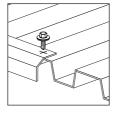


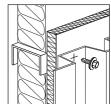
Dimensions

Uses:


Fastening sheet metal to sheet metal, with or without intermediate insulation layer. For corrosion-resistant and watertight joints.






Applications

Examples

3.68 9/2011

Design data

Drilling capacity Σt

max. 2,0 mm

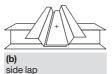
Tightening torque (Recommendation)

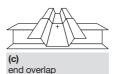
Screw in end-stop oriented

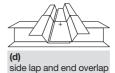
Tightening torque: 5 Nm

Component II steel with t _{II} [mm]								
S235J ac S280GD	J	DIN EN 1 D (DIN EN						
0.63	0.75	0.88	1.00	1.13	1.25			

Component I steel with t ₁ [mm] S280GD or S320GD (DIN EN 10326)	Shear fo	orce V _{R,k} [kN]			
0.63	1.00	1.50	1.80	2.00 a	2.00 a	2.00 a
0.75	1.00	1.80	2.10	2.40	2.40 a	2.40 a
0.88	1.20	1.90	2.30	2.80	2.80	-
1.00	1.40	2.10	2.60	3.10	-	-
1.13	1.40	2.10	2.60	-	-	-
1.25	1.40	2.10	-	-	-	-
	Tension	force N _R ,	k [kN]			
0.50	0.43	0.54	0.65	0.76 a	0.92 a	1.08 a
0.55	0.55	0,68	0.82	0.95 a	1.16 a	1.36 a
0.63	0.80	1.00	1.20	1.40 a	1.70 a	2.00 a
0.75	0.80	1.00	1.20	1.40	1.70 a	2.00 a
0.88	0.80	1.00	1.20	1.40	1.70	_
1.00	0.80	1.00	1.20	1.40	-	-
1.13	0.80	1.00	1.20	-	-	-
1.25	0.80	1.00	-	-	-	-
Additional provisions:	For steel	grade S32	20GD char	acteristic	loads can	be increa-


9/2011 3.69


sed by 8%.



single

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection										
Screw prog	gram									
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Head size AF	Package contents	Ordering designation	Item no.			
1.25-2.0	6.0	4.8x22	16	8	500	S-MD51S 4.8x22	375228			
1.25-2.0	9.0	4.8 x 25	16	8	500	S-MD51S 4.8x25	375229			
1.25-2.0	6.0	4.8x22	19	8	500	S-MD61S 4.8x22	283052			

Design data

Drilling capacity Σt

max. 3,0 mm

Tightening torque (Recommendation)

Screw in end-stop oriented

Tightening torque: 5 Nm

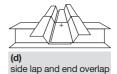
S2	omponent II 235J accordii 280GD or S3	ng to DIN	EN 100	25-2			
54	200000010100	2000 (0)	IIN EIN IC	1320)			
0.	63 0.75	0.88	1.00	1.13	1.25	1.50	2.00

Component I steel with ti [mm]										
S280GD or S320GD										
(DIN EN 10326)	Shear f	Shear force V _{R,k} [kN]								
0.63	1.00	1.30	1.70	2.00	2.40	2.80 ac	3.00 ac	3.00 a		
0.75	1.30	1.80	2.10	2.40	2.70	3.00	3.80	3.80 a		
0.88	1.30	1.80	2.10	2.70	2.70	3.00	3.80	4.50		
1.00	1.30	1.80	2.40	3.00	3.00	3.00	3.80	5.20		
1.13	1.30	1.80	2.40	3.40	3.40	3.40	4.40	-		
1.25	1.40	1.80	2.80	3.80	3.90	4.10	5.00	-		
1.50	1.40	1.80	2.80	3.80	3.90	4.70	5.00	-		
	Tensio	n force N	NR,k [kN]							
0.50	0.38	0.49	0.59	0.76	0.92	1.03	1.24	1.24		
0.55	0.48	0.61	0.75	0.95	1.16	1.30	1.57	1.57		
0.63	0.70	0.90	1.10	1.40	1.70	1.90	2.30	2.30		
0.75	0.70	0.90	1.10	1.40	1.70	1.90	2.50	3.30		
0.88	0.70	0.90	1.10	1.40	1.70	1.90	2.50	3.70		
1.00	0.70	0.90	1.10	1.40	1.70	1.90	2.50	3.70		
1.13	0.70	0.90	1.10	1.40	1.70	1.90	2.50	_		
1.25	0.70	0.90	1.10	1.40	1.70	1.90	2.50	-		
1.50	0.70	0.90	1.10	1.40	1.70	1.90	2.50	-		
A 1 1'1' 1 ' '			2075 1	100500		4 4 44				

Additional provisions:

For steel grade S275J and S350GD characteristic loads can be

increased by 10%.



Safety factors according to EN 1993-1-3 and CUAP 06.02/07									
	Tension	Shear							
Partial safety concept									
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$							
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-							
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$							
Global safety concept									
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$							
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$							

 $^{^{\}star}$ Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw sele	ection						
Screw pro	gram						
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Head size AF	Package contents	Ordering designation	Item no.
1.25-3.0	8.0	5.5x25	16	8	500	S-MD51S 5.5x25	378257
1.25-3.0	15.0	5.5x32	16	8	250	S-MD51S 5.5x32	375230
1.25-3.0	21.0	5.5x38	16	8	250	S-MD51S 5.5x38	375231
1.25-3.0	33.0	5.5 x 50	16	8	250	S-MD51S 5.5x50	375232

3.72 9/2011

S-MD 51 LS 5.5×L/S-MD 61 LS 5.5×L/S-MD 71 LS 5.5×L stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer \varnothing 16, 19 or 22 mm.

Coloured screws available on request.

Fastening tools:

Screwdriver: Hilti ST2500, Hilti ST1800

Drive using depth

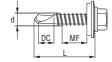
gauge set:

Nut set driver

S-NSD 8: Item no. 308901

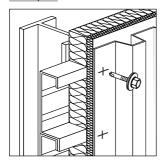
Approvals:

Item no. 304611


Dimensions

Uses:

Fastening trapezoidal metal sheets to liner trays.


For corrosion-resistant and watertight joints.

Applications

Examples

9/2011

Design data

Drilling capacity Σt

max. 4,0 mm

Tightening torque (Recommendation)

Screw in end-stop oriented

Tightening torque: 5 Nm

Component II steel with t_{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)

2×0.63 2×0.75 2×0.88 2×1.00 2×1.13 2×1.25 2×1.50

Component I							
steel with t _l [mm]							
S280GD or S320GD							
(DIN EN 10326)	Shear	force V _R	, k [kN]				
0.63	2.20	2.70	2.70	2.70	2.90	3.10	3.10
0.75	2.40	3.10	3.10	3.10	3.30	3.60	3.60
0.88	2.70	3.10	3.10	3.10	3.50	4.00	4.00
1.00	3.10	3.20	3.20	3.20	3.80	4.40	4.40
1.13	3.40	3.40	3.80	4.20	4.50	4.90	-
1.25	3.70	3.70	4.40	5.10	5.30	5.40	-
1.50	3.70	3.70	4.40	5.10	5.30	5.40	-
	Tensio	n force l	NR,k [kN]				
0.50	1.03	1.13	1.24	1.24	1.24	1.24	1.24
0.55	1.30	1.43	1.57	1.57	1.57	1.57	1.57
0.63	1.90	2.10	2.30	2.30	2.30	2.30	2.30
0.75	1.90	2.10	2.40	2.80	3.30	3.30	3.30
0.88	1.90	2.10	2.40	2.80	3.30	3.80	4.30
1.00	1.90	2.10	2.40	2.80	3.30	3.80	4.80
1.13	1.90	2.10	2.40	2.80	3.30	3.80	-
1.25	1.90	2.10	2.40	2.80	3.30	3.80	-
1.50	1.90	2.10	2.40	2.80	3.30	3.80	-
A 1 1'1' 1 ' '			2075 1	1005005			

Additional provisions:

For steel grade S275J and S350GD characteristic loads can be

increased by 10%.

Tightening torque:	5 Nm									
rightering torque.	JIMIII									
	S235J	Component II steel with t _{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)								
	0.63	0.75	0.88	1.00	1.13	1.25	1.50	1.75		
S280GD or S320GD	01	£ V	[1.N]] £		1					
(DIN EN 10326)		force V _F	-,	,	-	0.00	0.00	0.00		
0.63	0.99	1.35	1.58	1.80	2.00	2.20	2.20	2.20		
0.75	1.31	1.48	1.84	1.84	2.02	2.20	2.20	2.20		
0.88		1.72	2.10	2.10	2.15	2.20		2.20		
1.00	1.36	1.72	2.10	2.72	2.72	2.72	2.72	2.72		
1.13	1.39	1.72	2,10	2.72	3.36	3.36	3.36	3.36		
1.25	1.41	1.72	2.10	2.72	3.36	4.00	4.00	4.00		
1.50	1.41	1.72	2.10	2.72	3.36	4.00	4.00	4.00		
1.75	1.41	1.72	2.10	2.72	3.36	4.00	4.00	4.00		
2.00		1.72	2.10	2.72	3.36	4.00	4.00	4.00		
0.50		n force	, -	- ,		4.04	4.04	4.04		
0.50	0.46	0.67	0.96	1.24	1.24	1.24	1.24	1.24		
0.55	0.46	0.67	0.96	1.25	1.57	1.57	1.57	1.57		
0.63	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
0.75	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
0.88	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
1.00	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
1.13	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
1.25	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
1.50	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
1.75	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
2.00	0.46	0.67	0.96	1.25	1.59	1.92	1.92	1.92		
Additional provisions:		el grade sed by 8		nd S350	GD char	acteristic	c loads c	an be		

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw sele	ection						
Screw pro	gram						
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
1.8-4.0	5.0	5.5 x 25	16	8	500	S-MD51LS 5.5x25	378258
1.8-4.0	5.0	5.5 x 25	19	8	500	S-MD61LS 5.5x25	283058
1.8-4.0	5.0	5.5 x 25	22	8	500	S-MD71LS 5.5 x 25	285596

S-MD 53 S/S-MD 63 S/S-MD 73 S $5.5 \times L + 6.3 \times L$ stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer Ø 16. 19 or 22 mm.

Coloured screws available on request.

Fastening tools

Screwdriver: Hilti ST2500, Hilti ST1800

Drive using depth

gauge set:

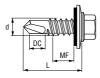
Nut set driver

S-NSD8:

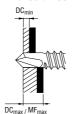
Item no. 304611

Item no. 308901

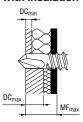
Approvals:



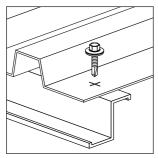
Dimensions

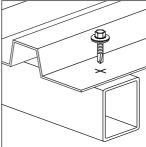

Uses:

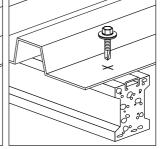
Fastening sheet metal to steel framing, with or without intermediate insulation layers. For corrosion-resistant and watertight joints.



without insulation




with insulation



Applications

Examples

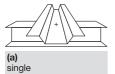
Design data

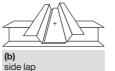
Drilling capacity Σt

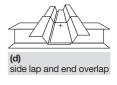
max. 6.0 mm

Tightening torque (Recommendation)

Screw in end-stop oriented


Tightening torque: 5 Nm


	Component II steel with t _{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)						
	1.50	2.00	2.50	3.00	4.00		
Component I steel with t _I [mm] S280GD or S320GD							
(DIN EN 10326)		ce V _{R,k} [kN	-				
0.63	2.10 ac	2.60 ac	3.00 ac	3.40 ac	3.40 ac		
0.75	2.50 ac	3.00 ac	3.50 ac	4.00 ac	4.00 ac		
0.88	2.70	3.40 ac	4.00 ac	4.60 ac	4.60 a		
1.00	2.90	4.80 ac	5.00 ac	5.20 ac	5.20 a		
1.13	3.30	5.10	5.40	6.00	6.00		
1.25	3.60	5.30	5.80	6.80	6.80		
1.50	4.40	5.90	6.60	7.20	7.20		
1.75	4.40	5.90	6.60	7.20	-		
2.00	5.40	6.50	6.60	7.20	-		
	Tension for	orce N _{R,k} [ŀ	kN]				
0.50	0.92 ac	1.35 ac	1.35 ac	1.35 ac	1.35 ac		
0.55	1.16 ac	1.71 ac	1.71 ac	1.71 ac	1.71 ac		
0.63	1.70 ac	2.50 ac	2.50 ac	2.50 ac	2.50 ac		
0.75	1.70 ac	2.60 ac	3.30 ac	3.30 ac	3.30 ac		
0.88	1.70	2.60 ac	3.60 ac	4.10 ac	4.10 a		
1.00	1.70	2.60 ac	3.60 ac	4.60 ac	4.70 a		
1.13	1.70	2.60	3.60	4.60	5.40		
1.25	1.70	2.60	3.60	4.60	5.90		
1.50	1.70	2.60	3.60	4.60	6.00		
1.75	1.70	2.60	3.60	4.60	-		
2.00	1.70	2.60	3.60	4.60	-		
3.78					9/2011		


Additional provisions:

For steel grade S275J and S350GD characteristic loads can be increased by 10 %.

end overlap	Siut

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept	Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Design data

Drilling capacity Σt

max. 6,00 mm

Tightening torque (Recommendation)

Screw in end-stop oriented

Tightening torque: 5 Nm

	Component II steel with t _{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)						
	1.50	2.00	2.50	3.00	4.00		
Component I steel with t _i [mm] S280GD or S320GD							
(DIN EN 10326)		ce V _{R,k} [kN	-				
0.63	2.20	2.50 ac	2.80 ac	3.00 ac	2.00 ac		
0.75	2.70	3.20 ac	3.60 ac	4.10 ac	4.10 ac		
0.88	3.00	3.70 ac	4.50 ac	5.30 ac	5.30 ac		
1.00	3.30	4.00 ac	5.20 ac	6.40 ac	6.40 ac		
1.13	3.70	4.70	5.70	6.70	6.70		
1.25	4.10	5.10	6.00	6.90	6.90		
1.50	5.00	6.30	6.90	7.50	8.10		
1.75	5.00	6.30	6.90	7.50	8.10		
2.00	6.70	6.70	6.90	7.50	8.10		
	Tension f	orce N _{R,k} [κN]				
0.50	0.76	1.46 ac	1.62 ac	1.62 ac	1.62 ac		
0.55	0.95	1.84 ac	2.05 ac	2.05 ac	2.05 ac		
0.63	1.40	2.70 ac	3.00 ac	3.00 ac	3.00 ac		
0.75	1.40	2.70 ac	3.90 ac	3.90 ac	3.90 ac		
0.88	1.40	2.70 ac	4.00 ac	4.80 ac	4.80 ac		
1.00	1.40	2.70 ac	4.00 ac	5.40 ac	5.60 ac		
1.13	1.40	2.70	4.00	5.40	6.20		
1.25	1.40	2.70	4.00	5.40	6.80		
1.50	1.40	2.70	4.00	5.40	7.20		
1.75	1.40	2.70	4.00	5.40	7.20		
2.00	1.40	2.70	4.00	5.40	7.20		
3.80					9/2011		

Additional provisions:

For steel grade S275J and S350GD characteristic loads can be increased by 10 %.

(b) side lap

(c) end overlap

(d) side lap and end overlap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept	Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

aciem bioi	grani						
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
2.1-6.0	8	5.5 x 25	16	8	500	S-MD53S 5.5x25	413434
2.1-6.0	15	5.5 x 32	16	8	250	S-MD53S 5.5 x 32	413435
2.1-6.0	21	5.5 x 38	16	8	250	S-MD53S 5.5x38	413436
2.1-6.0	33	5.5 x 50	16	8	250	S-MD53S 5.5x50	413437
2.1-6.0	46	5.5 x 63	16	8	100	S-MD53S 5.5x63	413438
2.1-6.0	8	5.5 x 25	19	8	500	S-MD63S 5.5x25	413450
2.1-6.0	15	5.5 x 32	19	8	250	S-MD63S 5.5 x 32	413451
2.1-6.0	21	5.5 x 38	19	8	250	S-MD63S 5.5 x 38	413452
2.1-6.0	33	5.5 x 50	19	8	250	S-MD63S 5.5x50	413453
2.1-6.0	46	5.5 x 63	19	8	100	S-MD63S5.5x63	413454
2.1-6.0	8	5.5 x 25	22	8	500	S-MD73S 5.5x25	413456
2.1-6.0	15	5.5 x 32	22	8	250	S-MD73S 5.5x32	413457
2.1-6.0	21	5.5 x 38	22	8	250	S-MD73S 5.5 x 38	413458
2.1-6.0	33	5.5 x 50	22	8	250	S-MD73S 5.5x50	413459
2.1-6.0	46	5.5 x 63	22	8	100	S-MD73S 5.5x63	413460
2.1-6.0	7	6.3 x 25	16	8	500	S-MD53S 6.3x25	413439
2.1-6.0	7	6.3x25	19	8	500	S-MD63S 6.3x25	413455
2.1-6.0	7	6.3x25	22	8	500	S-MD73S 6.3x25	413461

S-MD 43 S 5.5×L stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer Ø 14 mm.

Coloured screws available on request.

Fastening tools

Screwdriver: Hilti ST2500, Hilti ST1800

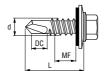
Drive using depth

gauge set: Item no. 304611

Nut set driver

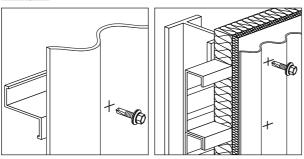
S-NSD 8: Item no. 308901

Approvals:


((

Dimensions

Uses:


Fastening sheet metal to steel framing, with or without intermediate insulation layers. For corrosion-resistant and watertight joints.

Applications

Examples

Design data

Drilling capacity Σt

max. 5,50 mm

Tightening torque (Recommendation)

Screw in end-stop oriented

Tightening torque: 5 Nm

	Component II steel with t _{II} [mm] S235J according to DIN EN 10025-2 S280GD or S320GD (DIN EN 10326)						
	1.50	2.00	2.50	3.00	4.00		
Component I steel with t _i [mm] S280GD or S320GD (DIN EN 10326)	Shear for	ce V_{R,k} [kN]					
0.63	2.50	2.50 ac	2.60 ac	2.70 ac	2.70 ac		
0.75	2.80	2.80 ac	2.80 ac	2.80 ac	3.70 ac		
0.88	3.00	3.00 ac	3.00 ac	3.00 ac	3.70 a		
1.00	3.30	3.70 ac	4.30 ac	4.90 ac	4.90 a		
1.13	3.50	3.90	4.60	5.30	5.30		
1.25	3.80	4.10	4.90	5.80	5.80		
1.50	3.80	5.30	5.60	5.90	6.40		
1.75	3.80	5.30	5.60	5.90	-		
2.00	5.60	5.60	5.60	5.90	-		
	Tension for	orce N _{R,k} [k	(N]				
0.63	1.90	2.30	2.30	2.30	2.30		
0.75	1.90	2.50	3.20	3.20	3.20		
0.88	1.90	2.50	3.30	4.10	4.10		
1.00	1.90	2.50	3.30	4.20	4.90		
1.13	1.90	2.50	3.30	4.20	5.60		
1.25	1.90	2.50	3.30	4.20	5.60		
1.50	1.90	2.50	3.30	4.20	5.60		
1.75	1.90	2.50	3.30	4.20	-		
2.00	1.90	2.50	3.30	4.20	-		
Additional provisions:	For steel grade S275J and S350GD characteristic loads						

can be increased by 10 %.

(b) side lap

(d) side lap and end overlap

414307

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection Screw program Drilling thickness Fastening thickness Dimensions Head size Package Ordering Item no. Sealing washer AF contents designation max. mm mm mm 2.1-6.0 5.5x25 S-MD43S 5.5x25 414297 8 14 8 500 2.1-6.0 15 5.5 x 32 14 8 500 S-MD43S 5.5x32 414300 2.1-6.0 S-MD43S 5.5x38 21 5.5x38 14 8 250 414302 2.1-6.0 250 S-MD43S 5.5x50 33 5.5x50 14 8 414304 2.1-6.0 46 5.5x63 14 8 100 S-MD43S 5.5x63

3.85 9/2011

S-MD 55 S/S-MD 65 S/S-MD 75 S 5.5×L stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer \varnothing 16, 19 or 22 mm.

Coloured screws available on request.

Fastening tools

Screwdriver: Hilti ST1800

Drive using depth

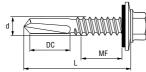
gauge set:

Nut set driver

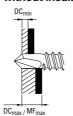
S-NSD 8: Item no. 308901

Approvals:

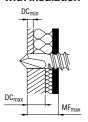
Item no. 304611


Dimensions

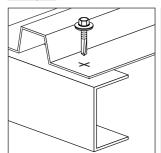
Uses:

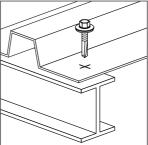

Fastening sheet metal to thick, hot-rolled steel beams, with or without intermediate insulation layers.

For corrosion-resistant and watertight joints.



without insulation




with insulation

Applications

Examples

Design data

Drilling capacity Σt

Additional provisions:

max. 15.0 mm

Tightening torque (Recommendation)

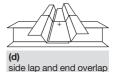
Screw in end-stop oriented

Tightening torque: 5 Nm

	4.00	5.00	6.00	8.00	10.00
_					
Component I steel with t _I [mm] S280GD or S320GD					
(DIN EN 10326)	Shear ford	ce V _{R,k} [kN]			
0.63	2.70 ac	2.70 ac	2.70 abcd	2.70 abcd	2.70 abcd
0.75	2.90 ac	2.90 ac	2.90 abcd	2.90 abcd	2.90 abcd
0.88	3.50 ac	3.50 ac	3.50 ac	3.50 ac	3.50 ac
1.00	4.00 ac	4.00 ac	4.00 ac	4.00 ac	4.00 ac
1.13	5.00	5.00	5.00 ac	5.00 ac	5.00 ac
1.25	6.00	6.00	6.00 ac	6.00 ac	6.00 a
1.50	6.00	6.20	6.50 ac	6.50	6.50 a
1.75	6.00	6.20	6.50	6.50	6.50
2.00	6.00	6.40	6.90	6.90	6.90
	Tension fo	rce N _{R,k} [k	N]		
0.50	1.35 ac	1.35 ac	1.35 abcd	1.35 abcd	1.35 abcd
0.55	1.71 ac	1.71 ac	1.71 abcd	1.71 abcd	1.71 abcd
0.63	2.50 ac	2.50 ac	2.50 abcd	2.50 abcd	2.50 abcd
0.75	3.30 ac	3.30 ac	3.30 abcd	3.30 abcd	3.30 abcd
0.88	4.10 ac	4.10 ac	4.10 ac	4.10 ac	4.10 ac
1.00	4.70 ac	4.70 ac	4.70 ac	4.70 ac	4.70 ac
1.13	5.40	5.40	5.40 ac	5.40 ac	5.40 ac
1.25	5.90	5.90	5.90 ac	5.90 ac	5.90 a
1.50	6.90	6.90	6.90 ac	6.90 ac	6.90 a
1.75	6.90	6.90	6.90	6.90	6.90
2.00	8.00	8.00	8.00	8.00	8.00

Component II steel with t_{II} [mm] S235J according to DIN EN 10025-2

can be increased by 10 %.


For steel grade S275J and S350GD characteristic loads

0

(-)		
(a)		
1.1		
sinale		

5

(b) side lap	

end overlap

Safety factors according to EN 1993-1-3 and CUAP 06.02/07 Tension Shear Partial safety concept

Partial safety factor	$ \gamma_{\rm M} = 1.33$	$\gamma_{\rm M} = 1.33$
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$

Global safety concept

Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Ocicw proj	grain						
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
4.6-15	12	5.5 x 45	16	8	250	S-MD55S 5.5 x 45	375239
4.6-15	17	5.5 x 50	16	8	250	S-MD55S 5.5x50	375240
4.6-15	30	5.5 x 63	16	8	100	S-MD55S 5.5x63	375241
4.6-15	47	5.5 x 80	16	8	100	S-MD55S 5.5x80	375242
4.6-15	67	5.5 x 100	16	8	100	S-MD55S 5.5x100	375243
4.6-15	12	5.5 x 45	19	8	250	S-MD65S 5.5x45	283065
4.6-15	17	5.5 x 50	19	8	250	S-MD65S 5.5x50	283066
4.6-15	30	5.5 x 63	19	8	100	S-MD65S 5.5x63	283067
4.6-15	47	5.5 x 80	19	8	100	S-MD65S 5.5x80	283068
4.6-15	67	5.5 x 100	19	8	100	S-MD65S 5.5x100	283069
4.6-15	12	5.5 x 45	22	8	250	S-MD75S 5.5 x 45	285603
4.6-15	17	5.5 x 50	22	8	250	S-MD75S 5.5x50	285604
4.6-15	30	5.5 x 63	22	8	100	S-MD75S 5.5x63	285605
4.6-15	47	5.5 x 80	22	8	100	S-MD75S 5.5x80	285606
4.6-15	67	5.5 x 100	22	8	100	S-MD75S 5.5x100	285607

3.88 9/2011

S-MD 01 S / S-MD 03 S / S-MD 05 S stainless steel self-drilling screw

Product data

General Information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start.

Fastening tools

Screwdriver: Hilti ST1800

Torque settings:

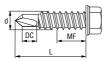
S-MD01S Ø 4.8 3-5

S-MD01S/S-MD01LS/

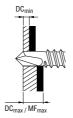
S-MD03S Ø 5.5 6− 8 S-MD03S Ø 6.3 8−10 S-MD05S Ø 5.5 8−10

Drive without depth gauge.

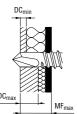
Cut-out controlled by torque clutch.


Nut set driver S-NSD 8: Item no. 308901

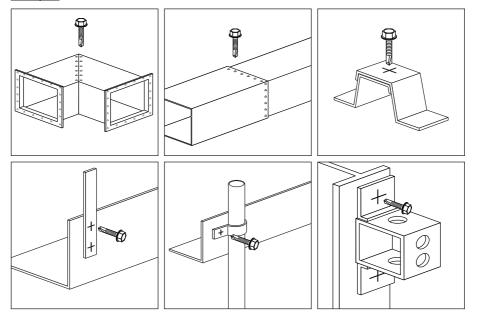
Dimensions


Uses:

Fastening steel sections and sheet steel to steel framing, with or without insulating material.



without insulation


with insulation

Applications

Examples

Design data

Drilling capacity Σt

max. 2.00 mm

	Component II steel with t _{II} [mm] S280GD or S320GD (DIN EN 10326							
	0.63	0.75	0.88	1.00	1.13	1.25		
Component I steel with t _I [mm] S280GD or S320GD (DIN EN 10326) Shear force V _{B,k} [kN]								
0.63	0.90	0.90	0.90	0.90	0.90	0.90		
0.75	0.90	1.60	1.60	1.60	_	_		
0.88	0.90	1.60	2.20	2.20	_	_		
1.00	0.90	1.60	2.20	2.80	-	-		
1.13	0.90	1.60	2.20	2.80	-	-		
1.25	0.90	1.60	-	-	-	-		
	Tension	force N _R	k [kN]					
0.63	0.80	0.80	0.80	0.80	0.80	0.80		
0.75	1.00	1.00	1.00	1.00	1.00	1.00		
0.88	1.00	1.00	1.00	1.00	1.00	1.00		
1.00	1.10	1.40	1.40	1.40	1.40	1.40		
1.13	1.10	1.40	1.40	1.40	1.40	1.40		
1.25	1.10	1.80	1.80	2.00	2.00	2.00		

Design data

Drilling capacity Σt

max. 4,00 mm

тах. 4,00 тт								
	Component II steel with t _{II} [mm]							
	S280GE	or S320	GD (DIN	EN 10326	3			
	2×0.63	2×0.75	2×0.88	2×1.00	2×1.13	2×1.25	2×1.50	
Component I steel with t _I [mm] S280GD or S320GD								
(DIN EN 10326)	Shear f	orce V _{R,k}	[kN]					
0.63	2.10	2.10	2.10	2.10	-	-	-	
0.75	2.10	3.00	3.00	3.00	-	-	-	
0.88	2.10	3.00	3.10	3.10	-	-	-	
1.00	2.10	3.00	3.10	3.20	-	-	-	
1.13	2.10	3.00	3.10	-	-	-	-	
1.25	2.10	3.00	-	-	-	-	-	
1.50	2.10	-	-	-	-	-	-	
	Tension	force N	R,k [kN]					
0.63	1.60	1.60	1.60	1.60	1.60	1.60	1.60	
0.75	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
0.88	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
1.00	2.00	2.20	2.20	3.10	3.10	3.10	3.10	
1.13	2.00	2.20	2.20	3.10	3.10	3.10	3.10	
1.25	2.00	2.20	2.20	3.10	3.10	4.30	4.30	
1.50	2.00	2.20	2.20	3.10	3.10	4.30	4.80	

3.92 9/2011

Design data

Drilling capacity Σt

max. 6.0 mm

Component II S280GD or S3		•
1.50	2.00	3.00

Component I steel with t _I [mm]						
S280GD or S320GD						
(DIN EN 10326)	Shear force V	R,k [kN]				
0.63	-	2.30	2.30			
0.75	-	2.30	3.00			
0.88	-	2.30	3.00			
1.00	-	4.80	-			
	Tension force N _{R,k} [kN]					
0.63	1.50	1.50	1.50			
0.75	1.70	2.00	2.00			
0.88	1.70	2.00	2.00			
1.00	1.70	2.60	3.20			
1.13	1.70	2.60	3.20			
1.25	1.70	2.60	4.60			
1.50	1.70	2.60	4.60			
2.00	1.70	2.60	4.60			

Design data

Drilling capacity Σt

max. 6.00 mm

2.00

			-		
	Component II steel with t _{II} [mm]				
	S280GD or S3	320GD (DIN EN	10326		
	1.50	2.00	3.00		
Component I steel with t _I [mm] S280GD or S320GD					
(DIN EN 10326)	Shear force \	/_{R,k} [kN]			
0.63	-	2.40	2.40		
0.75	_	2.40	3.50		
0.88	_	2.40	3.50		
1.00	-	3.90	-		
	Tension force	e N _{R,k} [kN]			
0.63	1.40	1.70	1.70		
0.75	1.40	2.20	2.20		
0.88	1.40	2.20	2.20		
1.00	1.40	2.70	3.70		
1.13	1.40	2.70	3.70		
1.25	1.40	2.70	5.40		
1.50	1.40	2.70	5.40		

2.70

5.40

1.40

Design data

1.50

2.00

Drilling capacity Σt

max. 12.00 mm

	Component II steel with t _{II} [mm] S280GD or S320GD (DIN EN 10326					
	4.00	6.00	8.00			
Component I steel with t _I [mm] S280GD or S320GD		e 51 h 17				
(DIN EN 10326)	Shear force \	/R,k [KN]				
0.75	4.10	4.10	4.10			
0.88	4.80	4.80	4.80			
1.00	5.40	5.40	5.40			
1.13	5.40	5.40	5.40			
1.25	6.70	6.70	6.70			
	Tension force	N _{R,k} [kN]				
0.63	1.40	1.40	1.40			
0.75	1.60	1.60	1.60			
0.88	1.60	1.60	1.60			
1.00	2.20	2.20	2.20			
1.13	2.20	2.20	2.20			
1.25	2.70	2.70	2.70			

3.30

4.30

3.30

4.30

3.30

4.30

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw program

OCICW PIOS	ji ai i i					
Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Head size AF	Package contents	Ordering designation	Item no.
1.25-2.0	9	4.8x22	8	500	S-MD01S 4.8x22	285608
1.8-4	8	5.5 x 25	8	500	S-MD01LS 5.5x25	285609
2.1-6.0	11	5.5 x 25	8	500	S-MD03S5.5x25	413408
2.1-6.0	18	5.5 x 32	8	250	S-MD03S5.5x32	413409
2.1-6.0	24	5.5 x 38	8	250	S-MD03S5.5x38	413410
2.1-6.0	36	5.5 x 50	8	250	S-MD03S5.5x50	413411
2.1-6.0	49	5.5 x 63	8	100	S-MD03S5.5x63	413412
2.1-6.0	10	6.3x25	8	500	S-MD03 S 6.3 x 25	413413
2.1-6.0	17	6.3 x 32	8	500	S-MD03 S 6.3x32	413414
4.6-15	15	5.5 x 45	8	250	S-MD05S5.5x45	285616
4.6-15	20	5.5 x 50	8	250	S-MD05S 5.5x50	285617
4.6-15	33	5.5 x 63	8	100	S-MD05S 5.5x63	285618
4.6-15	50	5.5 x 80	8	100	S-MD05S 5.5x80	285619
4.6-15	70	5.5 x 100	8	100	S-MD05S 5.5x100	285620

S-MD 31 PS 4.8×19 stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with reduced drill point = greater pull-out value, with fitted EPDM sealing washer Ø 12 mm.

Coloured screws available on request.

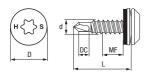
Fastening tools:

Screwdriver: Hilti ST1800

Drive using depth

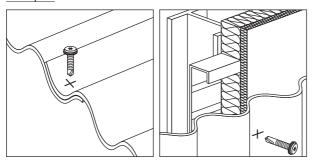
gauge set: Item no. 304611 Bit S-B TX25W: Item no. 237296

Approvals:


Hilti ST2500

Dimensions

Uses:


Fastening profiled corrugated sheet metal with profiled corrugate sheet metal with or without intermediate insulation layers.

For corrosion-resistant and watertight joints.

Applications

Examples

Design data

Drilling capacity Σt

max. 2.75 mm

Screw in end-stop oriented

out on a stop of the state										
	Component II steel with t _{II} [mm]									
	S235 (DIN EN 10025-1)									
	S280GD, S320GD or S350GD (DIN EN 10326)									
	0.63 0.75 0.88 1.00 1.13 1.25 1.50 1.75 2.00									

Component I steel with t _i [mm] S280GD up to S350GD	01		- W	FLA.II					
(DIN EN 10326)			e V _{R,k}		4.40	4.40	4.40	4.40	4.40
0.63			1.12				1.12	1.12	1.12
0.75	1.12	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31
0.88	1.12	1.31	1.92	1.92	1.92	1.92	1.92	1.92	-
1.00	1.12	1.31	1.92	2.53	2.53	2.53	2.53	2.53	-
1.13	1.12	1.31	1.92	2.53	2.53	2.53	2.53	-	-
1.25	1.12	1.31	1.92	2.53	2.53	2.53	2.53	-	-
1.50	1.12	1.31	1.92	2.53	2.53	2.53	-	-	-
1.75	1.12	1.31	1.92	2.53	-	-	-	-	-
2.00	1.12	1.31	-	-	-	-	-	-	-
	Tens	ion fo	rce N _I	R,k [kN]				
0.63	0.59	0.87	1.12	1.37	1.37	1.37	1.37	1.37	1.37
0.75	0.59	0.87	1.12	1.37	1.37	1.37	1.37	1.37	1.37
0.88	0.59	0.87	1.12	1.37	1.37	1.37	1.37	1.37	-
1.00	0.59	0.87	1.12	1.37	1.37	1.37	1.37	1.37	-
1.13	0.59	0.87	1.12	1.37	1.37	1.37	1.37	1.37	-
1.25	0.59	0.87	1.12	1.37	1.37	1.37	1.37	-	-
1.50	0.59	0.87	1.12	1.37	1.37	1.37	-	-	-
1.75	0.59	0.87	1.12	1.37	-	-	-	-	-
2.00	0.59	0.87	_	_	_	_	_	_	_

	Component II Solid timber S10/C24 with e ≥ 20 mm end stop oriented									
Component I										
steel with t _l [mm] S280GD up to S350GD (DIN EN 10326	0.63	0.75	0.88	1.00	1.13	1.25	1.50	1.75	2.00	
Failure of component I	Shea	r forc	e V _{R,k}	[kN]						
(bearing stress)	1.36	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	
Failure of component I	Tens	ion fo	rce N	R,k [kN]					
(pull-over)	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	
Addition provisions:	Calculating the resistance of the screw in timber (Component II) according to timber standard's									

Drilling capacity Σt

max. 2.75 mm

Screw in end-stop oriented

cicw iii cha-stop oi i	cited									
	Component II aluminium t _{II} [mm]									
	Profil sheeting with R _m ≥ 185 N/mm ² according to									
	DIN EN 485-2:2004-09 or substructure according to									
	DIN 4113-1/A1:2002-09 witht β_z 185 N/mm									
	0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50									

Component I											
aluminium t ₁ [mm] Profil sheeting with R _m ≥ 185 N/mm² according	·	6	- V- ·	[LAN]]							
DIN EN 485-2:2004-09			,		0.04	0.04	0.04	0.04	0.04	0.04	0.04
0.50	0.31	0.31	0.31	00.31		0.31	0.31	0.31	0.31	0.31	0.31
0.60	0.31	0.42	0.42	0.42		0.42	0.42	0.42	0.42	0.42	0.42
0.70	0.31	0.42	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
0.80	0.31	0.42	0.53	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
0.90	0.31	0.42	0.53	0.70	0.88	0.88	0.88	0.88	0.88	0.88	0.88
1.00	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	1.05	1.05	1.05
1.10	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	1.05	1.05	1.05
1.20	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	1.05	1.05	1.05
1.30	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	1.05	1.05	-
1.40	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	1.05	-	-
1.50	0.31	0.42	0.53	0.70	0.88	1.05	1.05	1.05	-	-	-
	Tens	ion fo	rce N	R,k [kN]						
0.50	0.17	0.26	0.35	0.46	0.55	0.61	0.61	0.61	0.61	0.61	0.61
0.60	0.17	0.26	0.35	0.46	0.55	0.61	0.70	0.70	0.70	0.70	0.70
0.70	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.83	0.83	0.83
0.80	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	0.99	0.99
0.90	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	1.00	1.05
1.00	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	1.00	1.05
1.10	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	1.00	1.05
1.20	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	1.00	1.05
1.30	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	1.00	_
1.40	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	0.91	_	_
1.50	0.17	0.26	0.35	0.46	0.55	0.61	0.73	0.82	_	_	_

3.100 9/2011

Addition provisions: For asymmetric loading on profile sheeting with tl < 1.25 mm or

asymmetric seel profiles with $t_{\text{II}} < 5.0 \text{ mm}$ (load values have to be

multiplied by a factor of 0.7).

Component II

Solid timber S10/C24 with e ≥ 20 mm

end stop oriented

Component I

aluminium t_l [mm]

Profil sheeting with R_m

≥ 185 N/mm² according to

DIN EN 485-2:2004-09 0.50 0.60 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

Failure of component I Shear force V_{R,k} [kN]

(bearing stress) 0.79 0.93 1.06 1.28 1.49 1.71 1.71 1.71 1.71 1.71 1.71

Failure of component I Tension force N_{R,k} [kN]

(pull-over) 0.61 0.70 0.83 0.99 1.19 1.42 1.70 2.02 2.02 2.02 2.02

Addition provisions: Calculating the resistance of the screw in timber

(Component II) according to timber standard's

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Drive dimensions	Package contents	Ordering designation	Item no.
1.00-2.75	5	4.8x19	12	TX 25	500	S-MD 31 PS 4.8x19	202421
Fastening t	o wood						
1.00-2.75	_	4.8x38	12	TX25	250	S-MD31PS 4.8x38	387248
1.00-2.75	-	4.8x50	12	TX25	250	S-MD31PS 4.8x50	202422

S-MD 31 PS 5.5 stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with reduced drill point = greater pull-out value, with fitted EPDM sealing washer Ø 12 mm.

Coloured screws available on request.

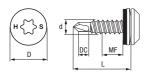
Fastening tools:

Screwdriver: Hilti ST1800 Hilti ST2500

Drive using depth

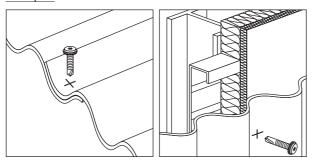
gauge set: Item no. 304611 Bit S-B TX25W: Item no. 237296

Approvals:



Dimensions

Uses:


Fastening profiled corrugated sheet metal with profiled corrugate sheet metal with or without intermediate insulation layers.

For corrosion-resistant and watertight joints.

Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 3.0 mm

Screw in end-stop oriented

	onent II			m]			
,	DIN EN GD up to		,	EN 103	26)		
0.63	0.75	0.88	1.00	1.13	1.25	1.50	1.75

Component I steel with t _l [mm] S280GD up to S350GD (DIN EN 10326)	Shear	· force \	/ R,k [kN]				
0.63	1.13	1.38	1.38	1.38	1.38	1.38	1.38	1.38
0.75	1.21	1.74	1.74	1.74	1.74	1.74	1.74	1.74
0.88	1.21	1.74	2.19	2.19	2.19	2.19	2.19	2.19
1.00	1.21	1.74	2.19	2.63	2.63	2.63	2.63	2.63
1.13	1.21	1.74	2.19	2.63	2.63	2.63	2.63	2.63
1.25	1.21	1.74	2.19	2.63	2.63	2.63	2.63	2.63
1.50	1.21	1.74	2.19	2.63	2.63	2.63	2.63	-
1.75	1.21	1.74	2.19	2.63	2.63	2.63	-	-
2.00	1.21	1.74	2.19	2.63	-	-	-	-
	Tensi	on force	N _{R,k} [κN]				
0.63	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
0.75	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
0.88	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
1.00	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
1.13	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
1.25	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
1.50	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
1.75	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91
2.00	0.66	0.89	1.14	1.39	1.68	1.91	1.91	1.91

S235 (DIN	nt II steel wi EN 10025-1 p to S350G		0326)	
0.63	0.75	0.88	1.00	1.13

Component I steel with t _I [mm] S280GD up to S350GD (DIN EN 10326)	Shear for	ce V_{R,k} [kN]			
0.63 × 2	2.04	2.04	2.04	2.04	2.04
0.75 × 2	2.04	2.41	2.41	2.41	-
0.88 × 2	2.04	2.41	2.41	2.41	-
1.00 × 2	2.04	2.41	2.41	3.07	-
1.13 × 2	2.04	2.41	2.41	-	-
1.25 × 2	2.04	2.41	-	-	_
	Tension for	orce N _{R,k} [k	:N]		
0.63 × 2	1.37	2.15	2.34	2.34	2.34
0.75 × 2	1.37	2.15	2.34	2.34	2.34
0.88 × 2	1.37	2.15	2.34	2.34	2.34
1.00 × 2	1.37	2.15	2.34	2.34	2.34
1.13 × 2	1.37	2.15	2.34	-	_
1.25 × 2	1.37	2.15	_	-	-
1.50 × 2	1.37	-	-	-	-

Profil s	l 485-2:	with R _n 2004-09	n ≥ 185 9 or sub	nm] N/mm² a estructur 3 _z 185 N	e accor	Ŭ	
0.50	0.60	0.70	0.80	0.90	1.00	1.50	2.00

Component I aluminium t _I [mm] Profil sheeting with R _m ≥ 185 N/mm² according to DIN EN 485-2:2004-09	Shear	· force \	/R k [kN	l				
0.50	0.35	0.48	0.60	0.60	0.60	0.60	0.60	0.60
0.60	0.37	0.48	0.60	0.60	0.60	0.60	0.60	0.60
0.70	0.39	0.50	0.60	0.60	0.60	0.60	0.60	0.60
0.80	0.39	0.50	0.60	0.60	0.60	0.60	0.60	0.60
0.90	0.39	0.50	0.60	0.60	0.60	0.60	0.60	0.60
1.00	0.39	0.50	0.60	0.60	1.00	1.20	1.20	1.20
1.10	0.39	0.50	0.60	0.60	1.00	1.20	1.20	-
1.20	0.39	0.50	0.60	0.60	1.00	1.20	1.20	-
1.30	0.39	0.50	0.60	0.60	1.00	1.20	1.20	-
1.40	0.39	0.50	0.60	0.60	1.00	1.20	1.20	-
1.50	0.39	0.50	0.60	0.60	1.00	1.20	1.20	-
	Tensio	on force	NR,k [kN]				
0.50	0.23	0.31	0.39	0.53	0.61	0.61	0.61	0.61
0.60	0.23	0.31	0.39	0.53	0.64	0.69	0.70	0.70
0.70	0.23	0.31	0.39	0.53	0.64	0.69	0.83	0.83
0.80	0.23	0.31	0.39	0.53	0.64	0.69	0.99	0.99
0.90	0.23	0.31	0.39	0.53	0.64	0.69	1.19	1.19
1.00	0.23	0.31	0.39	0.53	0.64	0.69	1.25	1.25
1.10	0.23	0.31	0.39	0.53	0.64	0.69	1.25	-
1.20	0.23	0.31	0.39	0.53	0.64	0.69	1.25	-
1.30	0.23	0.31	0.39	0.53	0.64	0.69	1.25	-
1.40	0.23	0.31	0.39	0.53	0.64	0.69	1.25	-
1.50	0.23	0.31	0.39	0.53	0.64	0.69	1.25	-

S235 acco	nt II steel t _{II} rding to DIN o to S350GI	EN 10026-		
2×0.63	2 × 20.70	2×0.80	2 × 1.00	2 × 1.13

Component I					
aluminium t _l [mm] Profil sheeting with R _m ≥ 185 N/mm² according to					
DIN EN 485-2:2004-09	Shear for	ce V _{R,k} [kN]			
0.50	0.94	0.94	0.94	0.94	0.94
0.60	0.94	0.94	0.94	0.94	0.94
0.70	0.94	1.21	1.21	1.21	1.21
0.80	0.94	1.21	1.21	1.21	-
0.90	0.94	1.21	1.21	1.21	-
1.00	0.94	1.21	1.21	1.21	-
1.10	0.94	1.21	1.21	-	-
1.20	0.94	1.21	1.21	-	-
1.30	0.94	1.21	-	-	-
1.40	0.94	1.21	-	-	-
1.50	0.94	1.21	-	-	-
	Tension for	orce N _{R,k} [k	(N]		
0.50	0.61	0.61	0.61	0.61	0.61
0.60	0.70	0.70	0.70	0.70	0.70
0.70	0.83	0.83	0.83	0.83	0.83
0.80	0.99	0.99	0.99	0.99	-
0.90	1.19	1.19	1.19	1.19	-
1.00	1.37	1.42	1.42	1.42	-
1.10	1.37	1.70	1.70	-	-
1.20	1.37	2.02	2.02	-	-
1.30	1.37	2.02	-	-	-
1.40	1.37	2.02	-	-	-
1.50	1.37	2.02	-	-	-
A -I -I'A'		and a firm a little		and the second second	11 1 4 0 5

Addition provisions::

For asymmetric loading on profile sheeting with t_{\parallel} < 1.25 mm or asymmetric seel profiles with t_{\parallel} < 5.0 mm (load values have to be multiplied by a factor of 0.7).

3.106 9/2011

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Drive dimensions		Ordering designation	Item no.
1.0-3.00	7	5.5x22	12	TX 25	500	S-MD 31 PS 5.5x22	202423
1.0-3.00	13	5.5x28	12	TX 25	500	S-MD 31 PS 5.5x28	202424
1.0-3.00	23	5.5x38	12	TX 25	250	S-MD 31 PS 5.5x38	202425
1.0-3.00	35	5.5x50	12	TX 25	250	S-MD 31 PS 5.5x50	202426

S-MD 33 PS stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer Ø 12 mm.

Coloured screws available on request.

Fastening tools:

Screwdriver: Hilti ST1800 Hilti ST2500

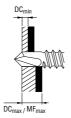
Drive using depth

gauge set: Item no. 304611 Bit S-B TX25W: Item no. 237296

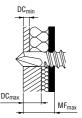
Approvals:

Dimensions

Uses:

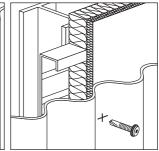

Fastening profiled corrugated sheet metal with steel base material with or without intermediate insulation layers.

For corrosion-resistant and watertight joints.



without insulation


with insulation



Applications

Examples

Load data

Design data

Drilling capacity Σt

max. 6.0 mm

Screw in end-stop oriented

	Component II aluminium t _{II} [mm]								
	Profil sheeting with R _m ≥ 185 N/mm ² according to								
	DIN EN 485-2:2004-09 or substructure according to								
	DIN 41	13-1/A1	:2002-0	9 witht	β_z 185 N/mm ²				
	1.00	1.50	2.00	2,50	3.00				

Component I steel with t _I [mm] S280GD up to S350GD (DIN EN 10326)	Shoar	force V			
0.63	1.10	1.10	1.10	1.10	1.10
0.75	1.28	1.46	1.46	1.46	1.46
0.88	1.32	1.73	1.73	1.73	1.73
1.00	1.36	1.99	1.99	1.99	1.99
1.13	1.36	1.99	1.99	1.99	1.99
1.25	1.36	1.99	1.99	1.99	1.99
1.50	1.36	1.99	1.99	1.99	1.99
1.75	1.36	1.99	1.99	1.99	1.99
2.00	1.36	1.99	1.99	1.99	1.99
	Tensio	n force	NR,k [k	N]	
0.63	0.34	0.78	1.17	1.66	2.34
0.75	0.34	0.78	1.17	1.66	2.34
0.88	0.34	0.78	1.17	1.66	2.34
1.00	0.34	0.78	1.17	1.66	2.34
1.13	0.34	0.78	1.17	1.66	2.34
1.25	0.34	0.78	1.17	1.66	2.34
1.50	0.34	0.78	1.17	1.66	2.34
1.75	0.34	0.78	1.17	1.66	2.34
2.00	0.34	0.78	1.17	1.66	2.34

Con	nponent II ste	eel t _{II} [mm]						
S23	S235 according to DIN EN 10026-2							
S28	OGD up to S3	50GD as per DIN E	N 10326					
0.75	0.88 1.0	0 1.25 2×0.75	2 × 0.88	2 × 1.00 2 × 1.25				

Component I steel with t _I [mm] S280GD up to S350GD (DIN EN 10326)	Shea	r force	V _{R,k} [k	:N]				
0.63	-	-	-	-	-	-	-	-
0.75	1.29	1.29	1.29	1.29	2.05	2.05	2.05	2.05
0.88	1.29	1.81	1.81	1.81	2.05	2.56	2.56	2.56
1.00	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
1.13	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
1.25	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
1.50	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
1.75	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
2.00	1.29	1.81	2.32	2.32	2.05	2.56	3.07	3.07
	Tensi	on for	ce N _{R,k}	[kN]				
0.63	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
0.75	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
0.88	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
1.00	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
1.13	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
1.25	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
1.50	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
1.75	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91
2.00	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91

3.110 9/2011

Drilling capacity Σt

max. 6.0 mm

Screw in end-stop oriented

Screw in ena-stop orientea							
	Component II aluminium t _{II} [mm]						
	Profil sheeting with R _m ≥ 185 N/mm ² according to						
	DIN EN 485-2:2004-09 or substructure according to						
	DIN 4113-1	/A1:2002-09	9 with β_z 185	5 N/mm²			
	1.00	1.50	2.00	2.50	3.00		

Component I aluminium t _I [mm]					
Profil sheeting with R _m ≥ 185 N/mm² according to					
DIN EN 485-2:2004-09	Shear for	ce V _{R,k} [kN]			
0.50	0.56	0.79	0.79	0.79	0.79
0.60	0.65	0.91	0.91	0.91	0.91
0.70	0.74	1.03	1.03	1.03	1.03
0.80	0.85	1.10	1.10	1.10	1.10
0.90	0.96	1.18	1.18	1.18	1.18
1.00	1.07	1.25	1.25	1.25	1.25
1.10	1.07	1.25	1.25	1.25	1.25
1.20	1.07	1.25	1.25	1.25	1.25
1.30	1.07	1.25	1.25	1.25	1.25
1.40	1.07	1.25	1.25	1.25	1.25
1.50	1.07	1.25	1.25	1.25	1.25
	Tension fo	orce N _{R,k} [k	N]		
0.50	0.34	0.61	0.61	0.61	0.61
0.60	0.34	0.70	0.70	0.70	0.70
0.70	0.34	0.78	0.83	0.83	0.83
0.80	0.34	0.78	0.99	0.99	0.99
0.90	0.34	0.78	1.17	1.19	1.19
1.00	0.34	0.78	1.17	1.42	1.42
1.10	0.34	0.78	1.17	1.66	1.70
1.20	0.34	0.78	1.17	1.66	2.02
1.30	0.34	0.78	1.17	1.66	2.02
1.40	0.34	0.78	1.17	1.66	2.02
1.50	0.34	0.78	1.17	1.66	2.02

Cor	nponent	t II steel	t _{ll} [mm	1]					
S23	S235 according to DIN EN 10026-2								
S28	OGD up	to S350	GD as	per DIN E	N 10326				
0.75	0.88	1.00	1.25	2 × 0.75	2 × 0.88	2 × 1.00	2 × 1.25		

Component I									
aluminium t_1 [mm] Profil sheeting with R_m \geq 185 N/mm² according to DIN EN 485-2:2004-09 Shear force $V_{R,k}$ [kN]									
DIN EN 485-2:2004-09		riorce	VR,k [K	avj					
0.50 0.60	-	_	_	_	_	-	_	_	
0.70	0.99	0.99	0.99	0.99	1.18	1.18	1.18	1.18	
0.80	0.99	0.99	0.99	0.99	1.18	1.18	1.18	1.18	
0.90	0.99	0.99	0.99	0.99	1.18	1.18	1.18	1.18	
1.00	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
1.10	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
1.20	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
1.30	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
1.40	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
1.50	0.99	0.99	1.31	1.31	1.18	1.18	1.18	1.18	
		on for	•						
0.50	0.45	0.61	0.61	0.61	0.61	0.61	0.61	0.61	
0.60	0.45	0.65	0.70	0.70	0.70	0.70	0.70	0.70	
0.70	0.45	0.65	0.83	0.83	0.83	0.83	0.83	0.83	
0.80	0.45	0.65	0.85	0.99	0.97	0.99	0.99	0.99	
0.90	0.45	0.65	0.85	1.08	0.97	1.19	1.19	1.19	
1.00	0.45	0.65	0.85	1.08	0.97	1.24	1.42	1.42	
1.10	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.70	
1.20	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91	
1.30	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91	
1.40	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91	
1.50	0.45	0.65	0.85	1.08	0.97	1.24	1.51	1.91	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07									
	Tension	Shear							
Partial safety concept									
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$							
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-							
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$							
Global safety concept									
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$							
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$							

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Drive dimensions		Ordering designation	Item no.
2.1-6.0	5	5.5x22	12	TX 25	500	S-MD 33PS 5.5x22	202427
2.1-6.0	11	5.5x28	12	TX 25	500	S-MD 33PS 5.5x28	202428
2.1-6.0	21	5.5x38	12	TX 25	250	S-MD 33PS 5.5x38	202429
2.1-6.0	33	5.5x50	12	TX 25	250	S-MD 33PS 5.5x50	202430

S-MD 35 PS stainless steel self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material, with hardened carbon steel drill point and thread start, with fitted EPDM sealing washer Ø 12 mm.

Coloured screws available on request.

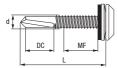
Fastening tools:

Screwdriver: Hilti ST1800 Hilti ST2500

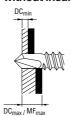
Drive using depth

gauge set: Item no. 304611 Bit S-B TX25W: Item no. 237296

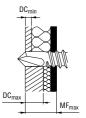
Approvals:


Dimensions

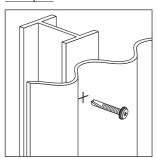
Uses:


Fastening profiled corrugated sheet metal with a thick, hot-rolled steel beams, with or without intermediate insulation layers.

For corrosion-resistant and watertight joints.



without insulation



with insulation

Applications

Examples

3.114 9/2011

Load data

Design data

Drilling capacity Σt

max. 12.5 mm

Screw in end-stop oriented

	Component II steel with t _{II} [mm]							
	S235 (DIN EN 10025-1)							
	S280GD up to S350GD (DIN EN 10326)							
	4.0	5.0	6.0	8.0	10.0			

Component I steel with t _I [mm] S280GD up to S350GD					
(DIN EN 10326)	Shear for	ce V _{R,k} [kN]			
0.63	2.69	2.93	3.16	3.16	3.16
0.75	2.95	3.11	3.27	3.27	3.27
0.88	3.46	3.73	4.01	4.01	4.01
1.00	3.97	4.36	4.74	4.74	4.74
1.13	4.97	5.16	5.35	5.35	5.35
1.25	5.97	5.97	5.97	5.97	5.97
1.50	5.97	6.23	6.49	6.49	6.49
1.75	5.97	6.33	6.69	6.69	6.69
2.00	5.97	6.43	6.89	6.89	6.89
	Tension fo	rce N _{R,k} [k	N]		
0.63	2.34	2.34	2.34	2.34	2.34
0.75	2.34	2.34	2.34	2.34	2.34
0.88	2.34	2.34	2.34	2.34	2.34
1.00	2.34	2.34	2.34	2.34	2.34
1.13	2.34	2.34	2.34	2.34	2.34
1.25	2.34	2.34	2.34	2.34	2.34
1.50	2.34	2.34	2.34	2.34	2.34
1.75	2.34	2.34	2.34	2.34	2.34
2.00	2.34	2.34	2.34	2.34	2.34

•	nt II steel w EN 10025-1 p to S350G	1)	10326)	
4.0	5.0	6.0	8.0	10.0

Component I					
aluminium t₁ [mm] Profil sheeting with R _m ≥ 185 N/mm² according to					
DIN EN 485-2:2004-09	Shear for	ce V _{R,k} [kN]			
0.50	1.03	1.03	1.03	1.03	1.03
0.60	1.27	1.27	1.27	1.27	1.27
0.70	1.51	1.51	1.51	1.51	1.51
0.80	1.79	1.79	1.79	1.79	1.79
0.90	2.07	2.07	2.07	2.07	2.07
1.00	2.35	2.35	2.35	2.35	2.35
1.10	2.35	2.35	2.35	2.35	2.35
1.20	2.35	2.35	2.35	2.35	2.35
1.30	2.35	2.35	2.35	2.35	2.35
1.40	2.35	2.35	2.35	2.35	2.35
1.50	2.35	2.35	2.35	2.35	2.35
	Tension fo	orce N _{R,k} [k	iN]		
0.50	0.61	0.61	0.61	0.61	0.61
0.60	0.70	0.70	0.70	0.70	0.70
0.70	0.83	0.83	0.83	0.83	0.83
0.80	0.99	0.99	0.99	0.99	0.99
0.90	1.19	1.19	1.19	1.19	1.19
1.00	1.42	1.42	1.42	1.42	1.42
1.10	1.70	1.70	1.70	1.70	1.70
1.20	2.02	2.02	2.02	2.02	2.02
1.30	2.02	2.02	2.02	2.02	2.02
1.40	2.02	2.02	2.02	2.02	2.02
1.50	2.02	2.02	2.02	2.02	2.02

Safety factors according to EN 1993-1-3 and CUAP 06.02/07					
	Tension	Shear			
Partial safety concept					
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$			
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-			
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$			
Global safety concept					
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$			
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$			

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

- 1	Orilling thickness DC mm	Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Drive dimensions		Ordering designation	Item no.
	4.6–12	12	5.5x45	12	TX 25	250	S-MD 35 PS 5.5x45	202431

Carbon steel self-tapping screws

Applications

 Screws with sealing washers for fastening profile steel sheet to profile steel sheet or for fastening profile steel sheet to steel framing.

Product description

The screw cuts its own thread in the pre-drilled hole. The correct hole diameter can be found in the technical data for each screw type. The fitted sealing washer makes the fastening watertight.

- The carbon steel screw is case hardened.
- The surface of the screw is galvanized. This protects the screw from corrosion and lubricates the thread-cutting operation.

All screws can be ordered with coloured heads and washers in colours according to the RAL colour chart.

Screw designations

e.g.: S-MP53Z 6.5x50	S M P	for screw fastening for metal construction for self-tapping screw (P = pre-drill)		
	5	4 – sealing washer Ø 14 mm		
		5 – sealing washer \varnothing 16 mm		
		6 – sealing washer \varnothing 19 mm		
		7 – sealing washer \varnothing 22 mm		
		0 – without sealing washer		
	3	2 – screw with blunt point for steel members with thickness 1.25 mm or greater, not for use on timber framing		
		3 – screw with point for steel members up to max. 3 mm thickness or for use on timber framing		
		Z galvanized carbon steel (Z for zinc)		
	6.5 x 50	screw dimensions (Ø x length)		

S-MP 53 Z 6.5×L case-hardened carbon steel self-tapping screw

Product data

General information

Material specification: Fastening tools:

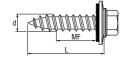
Carbon steel: case-hardened Drilling tool: Hilti UD 16, UD 30 Zinc coating: \geq 8 μ m galvanized Screwdriver: Hilti ST 1800 with fitted EPDM sealing washer \varnothing 16 mm. Depth gauge set: Item no. 304611 Coloured screws available on request. Nut set driver S-NSD 3 /s": Item no. 308905

HSS drill bit

Recommended pre-drilled hole diameter in t_{II}:

t/mm 0.63 0.75 1.25 1.50 3.00 0.88 Predrilled Ø mm: 3.5 4.0 4.5 4.5 5.0 5.0 Predrilled \emptyset in timber: 4.5 mm

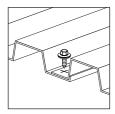
Dimensions

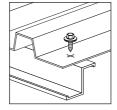

Uses:

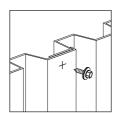
Fastening sheet steel to thin steel members and to timber framing.

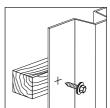
Steel framing Member thickness max. 3 mm

Timber framing Depth of engagement min. 30 mm








Applications

Examples

Load data

Design data

0.88

1.00

	•	S280GD or S320GD (DIN EN 10326			
	1.00	1.50	2.00	3.00	
•					
Component I steel with t _I [mm] S280GD or S320GD					
(DIN EN 10326)	Shear for	ce V _{R,k} [kN]]			
0.63	2.20	2.70	2.70	-	
0.75	2.30	3.20	3.20	_	

Component II steel with tu [mm]

3.20

3.40

3.20

3.60

	Tension f	orce N _{R,k} [kN]		
0.63	1.40	2.20	3.20	3.20
0.75	1.40	2.20	3.50	3.80
0.88	1.40	2.20	3.50	3.80
1.00	1.40	2.20	3.50	5.00

2.30

2.40

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept	Global safety concept					
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
8	6.5 x 19	16	3/8"	500	S-MP53Z6.5x19	375288
14	6.5x25	16	3/8"	500	S-MP53Z6.5x25	375289
21	6.5 x 32	16	3/8"	250	S-MP53Z6.5x32	375290
27	6.5x38	16	3/8"	250	S-MP53Z6.5x38	375291
39	6.5 x 50	16	3/8"	250	S-MP53Z6.5x50	375292
52	6.5 x 63	16	3/8"	100	S-MP53Z6.5x63	375293
89	6.5 x 100	16	3/8"	100	S-MP53Z6.5x100	375287

S-MP 52 Z 6.3×L case-hardened carbon steel self-tapping screw

Product data

General information

Material specification: Fastening tools:

galvanized, with fitted EPDM sealing washer Ø 16 mm.

Coloured screws available on request.

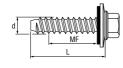
Drilling tool: Hilti UD30
Screwdriver: Hilti ST1800
Depth gauge set: Item no. 304611
Nut set driver S-NSD 3/8": Item no. 308905

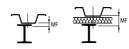
HSS drill bit

Recommended pre-drilled hole diameter in t_{II}:

t/mm 1.25 1.50 2.00 4.00 6.00 ≥7.00 Predrilled Ø mm: 5.00 5.00 5.30 5.30 5.50 5.70

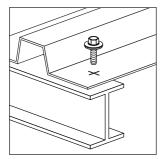
Dimensions

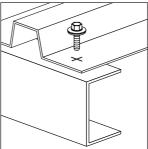

Uses:


Fastening sheet steel to steel framing, with or without intermediate insulating material.

Steel framing Depth of engagement min. 1.25 mm

Timber framing Unsuitable





Applications

Examples

Load data

Design data

Component II S280GD or S3		•
3.00	4.00	6.00

Component I steel with t _I [mm] S280GD or S320GD			
(DIN EN 10326)	Shear forcet	V _{R,k} [kN]	
0.63	2.80	2.80	2.80
0.75	2.80	3.60	3.60
0.88	2.80	3.60	4.60
1.00	2.80	3.60	4.60
	Tension force	N _{R,k} [kN]	
0.63	3.20	3.20	3.20
0.75	3.80	3.80	3.80
0.88	3.80	3.80	3.80
1.00	4.80	4.80	4.80

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

3.124 9/2011

Screw selection

Screw program

Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
10	6.3x19	16	3/8"	500	S-MP52Z6.3x19	375279
16	6.3x25	16	3/8"	500	S-MP52Z6.3x25	375280
23	6.3x32	16	3/8"	250	S-MP52Z6.3x32	375281
29	6.3x38	16	3/8"	250	S-MP52Z6.3x38	375282
41	6.3x50	16	3/8"	250	S-MP52Z6.3x50	375283
54	6.3x63	16	3/8"	100	S-MP52Z6.3x63	375284
66	6.3x75	16	3/8"	100	S-MP52Z6.3x75	375285
79	6.3x88	16	3/8"	100	S-MP52Z6.3x88	375286
91	6.3x100	16	3/8"	100	S-MP52Z6.3x100	375278

Stainless steel self-tapping screws

Applications

- Stainless steel screws with sealing washers for fastening profile steel sheet to profile steel sheet or for fastening profile steel sheet to steel framing.
- Fastening profile aluminium sheet to profile aluminium sheet or for fastening profile aluminium sheet to steel framing.

Product description

The screw cuts its own thread in the pre-drilled hole. The correct hole diameter can be found in the technical data for each screw type. The fitted sealing washer makes the fastening watertight.

- The screw is made from stainless steel.
- The surface of the screw is galvanized. This lubricates the thread-cutting operation.

These screws holds in approval by ETA (European Technical Approval) Please note the approval mark shown for each of the applicable screw programs.

ETA-10/018

All screws can be ordered with coloured heads and washers in colours according to the RAL colour chart.

Screw designations

e.g.: S-MP53S 6.5x50	S	for screw fastening
	M	for metal construction
	Р	for self-tapping screw (P = pre-drill)
	5	4 – sealing washer Ø 14 mm
		5 – sealing washer Ø 16 mm
		6 – sealing washer Ø 19 mm
		7 – sealing washer Ø 22 mm
		0 - without sealing washer
	3	2 - screw with blunt point for steel members with
		thickness 1.25 mm or greater, not for use on
		timber framing
		3 – screw with point for steel members up to max.
		3 mm thickness or for use on timber framing
		S stainless steel 1.4301 (S for stainless steel)
	6.5 x 50	screw dimensions (Ø x length)

S-MP53S 6.5×L/S-MP63S 6.5×L/S-MP73S 6.5×L self-tapping screw

Product data

General information

Material specification:Fastening tools:made from A2 (AISIDrilling tool:Hilti UD30304) stainless steel,Screwdriver:Hilti ST1800

with fitted EPDM seal- Depth gauge set: Item no. 304611 ing washer Ø 16. 19 or Nut set driver S-NSD %": Item no. 308905

22 mm. HSS drill bit

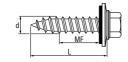
Coloured screws available on request.

Recommended pre-drilled hole diameter in t_{II}:

t/mm 0.63 0.75 0.88 1.25 1.50 3.00 Pre-drilled Ø mm 3.50 4.00 4.50 4.50 5.00 5.00

Pre-drilled Ø in timber 4.50 mm

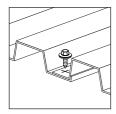
Approvals:

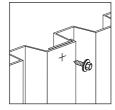

Dimensions

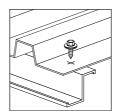
Uses:

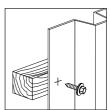
Fastening aluminium or steel sheet to thin steel or aluminium members or to timber framing.

Steel framing: Member thickness max. 3 mm
Timber framing: Depth of engagement min. 30 mm





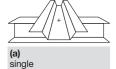



Applications

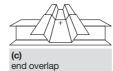
Examples

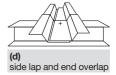
Load data

Design data


Screw in end-stop oriented

out on an one of one of one										
Component II steel with t _{II} [mm]										
S235J according to DIN EN 10025-2										
S280GD or S320GD (DIN EN 10326)										
	0.63	0.75	0.88	1.00	1.13	1.25	1.50	2.00	3.00	
Pre-drill (Ø mm)	4.0	4.0	4.5	4.5	4.5	4.5	5.0	5.0	5.0	
Tightening torque										
Recommendation (Nm)	3	3	3	3	3	3	5	5	5	


Component I steel with t _I [mm] S280GD or S320GD (DIN EN 10326)	Shear	force \	/ _{R,k} [kN						
0.63	1.30	1.50	1.80	2.00ac	2.30ac	2.50ac	2.90ac	2.90ac	2.90ac
0.75	1.40	1.60	1.90	2.20ac	2.50ac	2.60ac	3.10ac	3.50ac	3.50ac
0.88	1.50	1.70	2.00	2.30ac	2.60ac	2.80ac	3.20ac	3.70ac	3.70ac
1.00	1.50	1.80	2.10	2.50	2.80	3.10	3.60	3.90ac	3.90ac
1.13	1.60	1.80	2.20	2.60	2.90	3.20	3.80	4.00ac	4.00ac
1.25	1.60	1.90	2.30	2.70	3.00	3.30	4.00	4.10ac	4.10ac
1.50	1.60	1.90	2.40	2.80	3.20	3.50	4.00	4.30	4.30
1.75	1.60	1.90	2.40	2.80	3.20	3.50	4.00	4.30	4.30
2.00	1.60	1.90	2.40	2.80	3.20	3.50	4.00	4.30	4.30
	Tensio	n force	NR,k [kN]					
0.50	0.49	0.59	0.70	0.76ac	0.86ac	0.97ac	1.13ac	1.19ac	1.19ac
0.55	0.61	0.75	0.89	0.95ac	1.09ac	1.23ac	1.43ac	1.50ac	1.50ac
0.63	0.90	1.10	1.30	1.40ac	1.60ac	1.80ac	2.10ac	2.20ac	2.20ac
0.75	0.90	1.10	1.30	1.40ac	1.60ac	1.80ac	2.10ac	2.80ac	2.80ac
0.88	0.90	1.10	1.30	1.40ac	1.60ac	1.80ac	2.10ac	3.50ac	3.50ac
1.00	0.90	1.10	1.30	1.40	1.60	1.80	2.20	3.60ac	3.60ac
1.13	1.00	1.20	1.40	1.50	1.70	1.90	2.30	3.60ac	3.60ac
1.25	1.00	1.20	1.40	1.50	1.70	1.90	2.30	3.60ac	3.60ac
1.50	1.00	1.20	1.40	1.50	1.70	1.90	2.30	3.60	3.60
1.75	1.00	1.20	1.40	1.50	1.70	1.90	2.30	3.60	3.60
2.00	1.00	1.20	1.40	1.50	1.70	1.90	2.30	3.60	3.60



	Component II aus Holz Solid timber S10/C24 with e ≥ 26 mm Screw in end-stop oriented								
Componentt I									
steel with t _I [mm] S280GD or S350GD (DIN EN 10326	0.63	0.75	0.88	1.00	1.13	1.25	1.50	2.00	3.00
Failure of									
component I	Shear	force	V _{R,k} [kľ	N					
(bearing stress)	2.90	3.50	3.70	3.90	4.00	4.10	4.30	4.30	4.30
Failure of									
component I	Tensi	on forc	e N _{R,k}	[kN]					
(pull-over)	2.00	2.80	3.50	3.60	3.60	3.60	3.60	3.60	3.60
Addition provisions:	Calculating the resistance of the screw in timber (Component II) according to timber standard's.								

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

3.130 9/2011

Screw selection

Screw progra	am					
Fastening thickness MF max, mm	Dimensions (dxL) mm	Sealing washer	Head size AF	Package contents	Ordering designation	Item no.
8	6.5 x 19	16	3/8"	500	S-MP53S 6.5x19	080448
14	6.5x25	16	3/8"	500	S-MP53S 6.5x25	080362
21	6.5 x 32	16	3/8"	250	S-MP53S 6.5x32	080450
27	6.5x38	16	3/8"	250	S-MP53S 6.5x38	080451
39	6.5 x 50	16	3/8"	250	S-MP53S 6.5x50	080337
52	6.5 x 63	16	3/8"	100	S-MP53S 6.5x63	085332
64	6.5 x 75	16	3/8"	100	S-MP53S 6.5x75	224558
77	6.5 x 88	16	3/8"	100	S-MP53S 6.5x88	085334
89	6.5 x 100	16	3/8"	100	S-MP53S 6.5x100	085335
114	6.5 x 125	16	3/8"	100	S-MP53S 6.5x125	219093
139	6.5 x 150	16	3/8"	100	S-MP53S 6.5x150	219094
164	6.5 x 175	16	3/8"	100	S-MP53S 6.5x175	224559
8	6.5 x 19	19	3/8"	500	S-MP63S 6.5x19	285217
14	6.5 x 25	19	3/8"	500	S-MP63S 6.5x25	285218
21	6.5 x 32	19	3/8"	250	S-MP63S 6.5x32	285219
27	6.5x38	19	3/8"	250	S-MP63S 6.5x38	285220
39	6.5 x 50	19	3/8"	250	S-MP63S 6.5x50	285221
52	6.5 x 63	19	3/8"	100	S-MP63S 6.5x63	285222
64	6.5 x 75	19	3/8"	100	S-MP63S 6.5x75	285223
77	6.5 x 88	19	3/8"	100	S-MP63S 6.5x88	285224
89	6.5 x 100	19	3/8"	100	S-MP63S 6.5x100	285225
114	6.5 x 125	19	3/8"	100	S-MP63S 6.5x125	285226
139	6.5 x 150	19	3/8"	100	S-MP63S 6.5x150	285227
164	6.5 x 175	19	3/8"	100	S-MP63S 6.5x175	285228
8	6.5 x 19	22	3/8"	500	S-MP73S 6.5x19	285205
14	6.5 x 25	22	3/8"	500	S-MP73S 6.5x25	285206
21	6.5 x 32	22	3/8"	250	S-MP73S 6.5x32	285207
27	6.5 x 38	22	3/8"	250	S-MP73S 6.5x38	285208
39	6.5 x 50	22	3/8"	250	S-MP73S 6.5x50	285209
52	6.5 x 63	22	3/8"	100	S-MP73S 6.5x63	285210
64	6.5 x 75	22	3/8"	100	S-MP73S 6.5x75	285211
77	6.5 x 88	22	3/8"	100	S-MP73S 6.5x88	285212
89	6.5 x 100	22	3/8"	100	S-MP73S 6.5x100	285213
114	6.5 x 125	22	3/8"	100	S-MP73S 6.5 x 125	285214
139	6.5 x 150	22	3/8"	100	S-MP73S 6.5 x 150	285215
164	6.5 x 175	22	3/8"	100	S-MP73S 6.5x175	285216

S-MP54S 6.3×L/S-MP64S 6.3×L/S-MP74S 6.3×L self-tapping screws

Nut set driver S-NSD 8: Item no. 308905

Product data

General information

Material specification: Fastening tools: made from A2 (AISI Drilling tool: Hilti UD30 304) stainless steel, Screwdriver: Hilti ST 1800 with fitted EPDM seal- Depth gauge set: Item no. 304611

22 mm. HSS drill bit

Coloured screws available on request.

ing washer \emptyset 16, 19,

Recommended pre-drilled hole diameter in t_{II}:

t/mm 1.25 1.50 2.00 4.00 6.00 >7.00 Pre-drilled Ø mm: 5.00 5.00

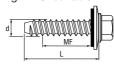
5.30 5.30 5.50 5.70

Approvals:

Hilti 🗖

NRW

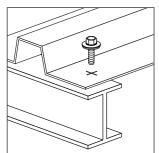
Dimensions

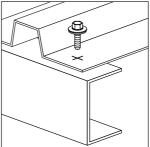

Uses:

Fastening aluminium or steel sheet on steel or aluminium members, with or without intermediate insulating material.

Steel framing Depth of engagement min. 1.25 mm

Timber framing Unsuitable





Applications

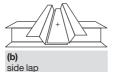
Examples

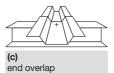
3.132 9/2011

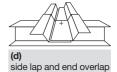
Load data

Design data

Screw in end-stop oriented


	Component II steel with t _{II} [mm] S235, S275 or S355 according to DIN EN 10025-2 S280GD, S320GD or S350GD (DIN EN 10326)									
	1.25	1	1.50	2.00	3.00	4.00	6.00	≥ 7.00		
Pre-drill (∅ mm)	5.0	5	5.0	5.3	5.3	5.3	5.5	5.5		
Tightening torque										
Recommendation (Nm)	5	5	5	5	5	5	5			


Component I steel with tı [mm] S280GD or S320GD							
(DIN EN 10326)	Shear f	orce V _{R,k}	[kN				
0.50	1.65 ac	1.72 ac	1.78 abcd				
0.55	2.08 ac	2.21 ac	2.34 abcd				
0.63	2.50 ac	2.70 ac	2.90 abcd	3.00 abcd	3.10 abcd	3.10 abcd	3.10 abcd
0.75	2.60 ac	3.10 ac	3.30 ac	3.60 ac	3.70 abcd	3.70 abcd	3.70 abcd
0.88	2.80 ac	3.20 ac	3.80 ac	4.10 ac	4.30 ac	4.40 ac	4.40 ac
1.00	3.20	3.60 ac	4.10 ac	4.80 ac	4.90 ac	5.10 ac	5.10 ac
1.13	3.40	4.00	4.60 ac	5.40 ac	5.60 ac	5.80 ac	5.80 ac
1.25	3.60	4.20	5.00 ac	6.10 ac	6.30 ac	6.50 ac	6.50 ac
1.50	3.70	4.40	5.70	6.80	7.10	7.30	7.30
1.75	3.70	4.70	6.20	7.60	7.70	8.10	8.10
2.00	5.00	6.30	7.90	8.30	8.40	9.40	9.40
	Tension	force N _I	R,k [kN]				
0.50	0.97 ac	1.35 ac	1.51 abcd				
0.55	1.23 ac	1.71 ac	1.91 abcd				
0.63	1.80 ac	2.50 ac	2.80 abcd				
0.75	2.00 ac	2.60 ac	3.10 ac	3.60 ac	3.60 abcd	3.60 abcd	3.60 abcd
0.88	2.00 ac	2.70 ac	3.30 ac	3.80 ac	3.80 ac	3.80 ac	3.80 ac
1.00	2.00	2.70	3.40 ac	4.00 ac	4.00 ac	4.00 ac	4.00 ac
1.13	2.00	2.70	3.60 ac	4.40 ac	4.40 ac	4.40 ac	4.40 ac
1.25	2.00	2.70	3.60 ac	4.80 ac	4.90 ac	4.90 ac	4.90 ac
1.50	2.00	2.70	3.60	5.60	5.90	5.90	5.90
1.75	2.00	2.70	3.60	5.80	6.90	7.10	7.10
2.00	2.00	2.70	3.60	6.00	7.30	7.60	7.60



single

Safety factors according to EN 1993-1-3 and CUAP 06.02/07								
	Tension	Shear						
Partial safety concept								
Partial safety factor	$\gamma_{\rm M} = 1.33$	$\gamma_{M} = 1.33$						
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-						
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$						
Global safety concept								
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$						
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$						

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
13	6.3x22	16	8	500	S-MP54S 6.3x22	244214
16	6.3x25	16	8	500	S-MP54S 6.3x25	283199
23	6.3x32	16	8	250	S-MP54S 6.3x32	283200
29	6.3x38	16	8	250	S-MP54S 6.3x38	283201
41	6.3x50	16	8	250	S-MP54S 6.3x50	283202
54	6.3x63	16	8	100	S-MP54S 6.3x63	283203
66	6.3x75	16	8	100	S-MP54S 6.3x75	283204
79	6.3x88	16	8	100	S-MP54S 6.3x88	283205
91	6.3 x 100	16	8	100	S-MP54S 6.3x100	283206
116	6.3 x 125	16	8	100	S-MP54S 6.3x125	283341
141	6.3 x 150	16	8	100	S-MP54S 6.3x150	283536
166	6.3 x 175	16	8	100	S-MP54S 6.3x175	283537
191	6.3x200	16	8	100	S-MP54S 6.3x200	403179
216	6.3x225	16	8	100	S-MP54S 6.3x225	403180
241	6.3x250	16	8	100	S-MP54S 6.3x250	403181
266	6.3x275	16	8	100	S-MP54S 6.3x275	403182
10	0.0.00	10	•	500	0.140040000000	222522
13	6.3x22	19	8	500	S-MP64S 6.3x22	283538
16	6.3x25	19	8	500	S-MP64S 6.3x25	283540
23	6.3 x 32	19	8	250	S-MP64S 6.3x32	283541
29	6.3x38	19	8	100	S-MP64S 6.3x38	283542
41	6.3x50	19	8	250	S-MP64S 6.3x50	283544
54	6.3×63	19	8	100	S-MP64S 6.3x63	283545
66	6.3x75	19	8	100	S-MP64S 6.3x75	283546
79	6.3x88	19	8	100	S-MP64S 6.3x88	283547
91	6.3x100	19	8	100	S-MP64S 6.3x100	283552
116	6.3 x 125	19	8	100	S-MP64S 6.3x125	283553
141	6.3 x 150	19	8	100	S-MP64S 6.3x150	283554
166	6.3 x 175	19	8	100	S-MP64S 6.3x175	283555
191	6.3x200	19	8	100	S-MP64S 6.3x200	403183
218	6.3x225	19	8	100	S-MP64S 6.3x225	403184
241	6.3x250	19	8	100	S-MP64S 6.3x250	403185
266	6.3x275	19	8	100	S-MP64S 6.3x275	403186

Fastening thickness MF max. mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
13	6.3x22	22	8	500	S-MP74S 6.3x22	283556
16	6.3 x 25	22	8	500	S-MP74S 6.3x25	283557
23	6.3 x 32	22	8	250	S-MP74S 6.3x32	283558
29	6.3 x 38	22	8	100	S-MP74S 6.3x38	283559
41	6.3 x 50	22	8	250	S-MP74S 6.3x50	283560
54	6.3 x 63	22	8	100	S-MP74S 6.3x63	283561
66	6.3x75	22	8	100	S-MP74S 6.3x75	283562
79	6.3x88	22	8	100	S-MP74S 6.3x88	283563
91	6.3 x 100	22	8	100	S-MP74S 6.3x100	283564
116	6.3 x 125	22	8	100	S-MP74S 6.3x125	283565
141	6.3 x 150	22	8	100	S-MP74S 6.3x150	283623
166	6.3 x 175	22	8	100	S-MP74S 6.3x175	283624
191	6.3x200	22	8	100	S-MP74S 6.3x200	403187
216	6.3 x 225	22	8	100	S-MP74S 6.3x225	403188
241	6.3x250	22	8	100	S-MP74S 6.3x250	403189
266	6.3x275	22	8	100	S-MP74S 6.3x275	403190

Stainless steel screws for sandwich panels

Applications

 Stainless steel screws with sealing washers for fastening sandwich panels to steel members or timber framing.

Product description

The screw is made from two different materials: Stainless steel (part B) and hardened carbon steel (part A)

The drill point and thread start are made from hardened carbon steel. This ensures troublefree screw fastening even in the hardest construction steel.

- The screw first drills the required hole in the part to be fastened and in the framing.
 It then cuts the thread.
- The threadless shank ensures that the screw can be driven without stressing the sandwich panel (no denting).
- The larger thread at the head (6.3 mm) pulls the sealing washer against the outer skin of the sandwich panel. This ensures that no water can penetrate.

The surface of the screw is galvanized. This protects the screw from corrosion and lubricates the drilling and thread-cutting operation.

These screws have been awarded approval by the building inspection authorities in Germany. Please note the approval mark shown for each of the applicable screw programs.

All screws can be ordered with coloured heads and washers in colours according to the RAL colour chart.

Screw designations

Screw designations		
e.g.: S-CD65S5.5x130	S	for screw fastening
	С	for sandwich panels (C = composite)
	D	for self-drilling screw (D = drilling)
	6	6 – sealing washer \varnothing 19 mm
		7 – sealing washer \varnothing 22 mm
	5	1 - drill point # 1 = for use on timber framing.
		3 - drill point # 3 = 2.0 to 5.5 mm drilling thickness
		5 - drill point # 5 = 3.5 to 12 mm drilling thickness
	S	stainless steel 1.4301 (S for stainless steel)
	5.5 x 130	screw dimensions (Ø x length)

Further designations:

S-CDW 61 S 6.5×180 W applications on timber (W = wood)

S-CD63S 5.5×L/S-CD73S 5.5×L self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material with fitted sealing washer \varnothing 19 or 22 mm.

Hardened drill point and thread start for trouble-free drilling and thread cutting in the supporting member, stainless steel section (threaded shank and head) for corrosion resistance.

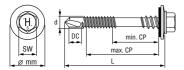
Coloured screws available on request.

Fastening tools

Screwdriver: Hilti ST1800

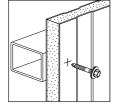
Drive using depth

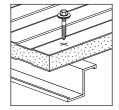
gauge set: Item no. 304611 Nut set driver S-NSD 8: Item no. 308901

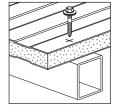

Approvals

Dimensions

Uses:


The Hilti S-CD self-drilling screw features a threadless shank for relief of pressure on the sandwich panel (no denting) and a threaded section at the head for good sealing washer contact.




Applications

Examples

Load data

Design data

Drilling capacity $\Sigma (t_{N2} + t_{II})$

max. ≤ 5.5 mm

Componer S235J acco S280GD or	ording to DI	N EN 10025		
1.50	2.00	2.50	3.00	4.00

Component I Sheeting with t _{N1} or t _{N2} [mm] S280GD or S320GD (DIN EN 10326)	Shear for	ce V _{R,k} [kN]			
0.50	1.30	1.30	1.30	1.30	1.30
0.55	1.50	1.50	1.50	1.50	1.50
0.63	1.70	1.70	1.70	1.70	1.70
0.75	2.00 a)	2.00	2.00	2.00	2.00
0.88	2.30 a)	2.30	2.30	2.30	2.30
1.00	2.50 a)	2.60 a)	2.60	2.60	2.60
	Tension for	orce N _{R,k} [k	:N]		
0.50	1.80	2.60 b)	2.60 b)	2.60 b)	2.60 b)
0.55	1.80	2.80	3.00 b)	3.00 b)	3.00 b)
0.63	1.80	2.80	3.40 b)	3.40 b)	3.40 b)
0.75	1.80	2.80	3.80	4.20 b)	4.20 b)
0.88	1.80	2.80	3.80	4.50	4.50
1.00	1.80	2.80	3.80	4.50	4.50

For t_{N2} made of S320GD all $V_{R,k}$ values, except those marked with ^{a)}, can be increased by 8.3 %.

For t_{N2} and t_{II} made of S320GD all $V_{R,k}$ values can be increased by 8.3 %.

For t_{N1} made of S320GD all $N_{\text{R,k}}$ values, except those marked with $^{\text{b)}}$, can be increased by 8.3 %.

For t_{N1} and t_{II} made of S320GD all $V_{R,k}$ values can be increased by 8.3 %.

Max. screw head deflection u depending on the sandwich panel thickness [mm]						
40	18.0	8.0	7.0	6.0	5.0	
50	22.0	10.5	9.0	7.5	6.5	
60	26.0	13.0	11.0	9.0	8.0	
70	29.5	16.5	14.0	12.0	11.5	
80	33.0	20.0	17.5	15.0	14.0	
100	33.0	20.0	17.5	15.0	14.0	
120	33.0	20.0	17.5	15.0	14.0	
≥140	33.0	20.0	17.5	15.0	14.0	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Head size AF	Package contents	Ordering designation	Item no.
2.0-5.5	22- 47	5.5x75	19	8	100	S-CD63S 5.5x75	375244
2.0-5.5	32- 57	5.5 x 85	19	8	100	S-CD63S 5.5x85	375245
2.0-5.5	42- 67	5.5 x 95	19	8	100	S-CD63S 5.5x95	375246
2.0-5.5	62- 87	5.5 x 115	19	8	100	S-CD63S 5.5x115	375247
2.0-5.5	82–107	5.5 x 135	19	8	100	S-CD63S 5.5 x 135	375248
2.0-5.5	102–127	5.5 x 155	19	8	100	S-CD63S 5.5x155	375249
2.0-5.5	122-147	5.5 x 175	19	8	100	S-CD63S 5.5x175	284542
2.0-5.5	137–182	5.5x210	19	8	100	S-CD63S 5.5x210	284543
2.0-5.5	22- 47	5.5x75	22	8	100	S-CD73S 5.5x75	285642
2.0-5.5	32- 57	5.5 x 85	22	8	100	S-CD73S 5.5x85	285643
2.0-5.5	42- 67	5.5 x 95	22	8	100	S-CD73S 5.5x95	285644
2.0-5.5	62- 87	5.5 x 115	22	8	100	S-CD73S 5.5 x 115	285645
2.0-5.5	82–107	5.5 x 135	22	8	100	S-CD73S 5.5 x 135	285646
2.0-5.5	102–127	5.5 x 155	22	8	100	S-CD73S 5.5 x 155	285647
2.0-5.5	122–147	5.5 x 175	22	8	100	S-CD73S 5.5 x 175	285648
2.0-5.5	137–182	5.5x210	22	8	100	S-CD73S 5.5x210	285649

S-CD65 S 5.5×L/S-CD75 S 5.5×L self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material with fitted sealing washer \varnothing 19 or 22 mm.

Hardened drill point and thread start for trouble-free drilling and thread cutting in the supporting member, stainless steel section (threaded shank and head) for corrosion resistance.

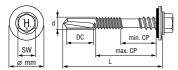
Coloured screws available on request.

Fastening tools

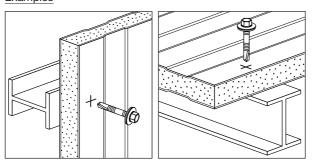
Screwdriver: Hilti ST 1800

Drive using depth

gauge set: Item no. 304611 Nut set driver S-NSD 8: Item no. 308901


Approvals

Dimensions


Uses:

The Hilti S-CD self-drilling screw features a threadless shank for relief of pressure on the sandwich panel (no denting) and a threaded section at the head for good sealing washer contact.

Applications

Examples

Load data

Design data

Drilling capacity $\Sigma (t_{N2} + t_{II})$

max. ≤ 12.0 mm

Componer S235J acce S280GD or	ording to DI	N EN 10025	
3.00	4.00	5.00	6.00

Component I Sheeting with t _{N1} or t _{N2} [mm] S280GD or S320GD	Ob f	W (U.N.I)		
(DIN EN 10326)	Snear for	ce V _{R,k} [kN]		
0.50	1.30	1.30	1.30	1.30
0.55	1.50	1.50	1.50	1.50
0.63	1.80	1.80	1.80	1.80
0.75	2.30	2.30	2.30	2.30
0.88	2.90	2.90	2.90	2.90
1.00	3.50	3.50	3.50	3.50
	Tension for	orce N _{R,k} [k	(N]	
0.50	2.10	2.10	2.10	2.10
0.55	2.50	2.50	2.50	2.50
0.63	2.90	2.90	2.90	2.90
0.75	3.70	3.70	3.70	3.70
0.88	4.50 a)	4.60	4.60	4.60
1.00	4.50 a)	5.20	5.20	5.20

For t_{N2} made of S320GD all $V_{R,k}$ values can be increased by 8.3 %.

For $t_{\rm N1}$ made of S320GD all $N_{\rm R,k}$ values, except those marked with ^{a)}, can be increased by 8.3 %.

For t_{N1} and t_{II} made of S320GD all $N_{R,k}$ values can be increased by 8.3 %.

Max. screw head deflection u depending on the sandwich panel thickness [mm]					
40	6.0	5.5	5.0	4.0	
50	8.0	7.5	7.0	6.0	
60	10.0	9.5	9.0	8.0	
70	12.5	11.5	11.0	9.5	
80	15.0	14.0	13.0	11.0	
100	15.0	14.0	13.0	11.0	
120	15.0	14.0	13.0	11.0	
≥140	15.0	14.0	13.0	11.0	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07							
	Tension	Shear					
Partial safety concept							
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$					
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-					
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$					
Global safety concept							
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$					
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$					

 $^{^*}$ Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

3.144 9/2011

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Head size AF	Package contents	Ordering designation	Item no.
3.5–12.0	22- 45	5.5 x 90	19	8	100	S-CD65S5.5x90	375250
3.5-12.0	32- 55	5.5 x 100	19	8	100	S-CD65S5.5x100	375251
3.5-12.0	42- 65	5.5 x 110	19	8	100	S-CD65S5.5x110	375252
3.5-12.0	62- 85	5.5 x 130	19	8	100	S-CD65S5.5x130	375253
3.5-12.0	82–105	5.5 x 150	19	8	100	S-CD65S5.5x150	375254
3.5-12.0	102–125	5.5 x 170	19	8	100	S-CD65S 5.5x170	375255
3.5-12.0	122–145	5.5 x 190	19	8	100	S-CD65S5.5x190	284544
3.5-12.0	137–175	5.5 x 220	19	8	100	S-CD65S5.5x220	284545
3.5-12.0	22- 45	5.5 x 90	22	8	100	S-CD75S 5.5x90	285650
3.5-12.0	32- 55	5.5 x 100	22	8	100	S-CD75S 5.5x100	285651
3.5-12.0	42- 65	5.5 x 110	22	8	100	S-CD75S 5.5x110	285652
3.5-12.0	62- 85	5.5 x 130	22	8	100	S-CD75S 5.5x130	285653
3.5-12.0	82–105	5.5 x 150	22	8	100	S-CD75S 5.5x150	285654
3.5-12.0	102–125	5.5 x 170	22	8	100	S-CD75S 5.5x170	285655
3.5-12.0	122–145	5.5 x 190	22	8	100	S-CD75S 5.5x190	285656
3.5–12.0	137–175	5.5 x 220	22	8	100	S-CD75S 5.5x220	285657

S-CDW 61 S 6.5×L/S-CDW 71 S 6.5×L self-drilling screw

Product data

General information

Material specification:

made from A2 (AISI 304) material with fitted sealing washer \varnothing 19 or 22 mm.

Hardened drill point and thread start for trouble-free drilling and thread cutting, stainless steel section (threaded shank and head) for corrosion resistance.

Coloured screws available on request.

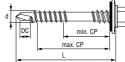
Fastening tools:

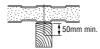
Screwdriver: Hilti ST1800

Drive using depth

gauge set: Item no. 304611 Nut set driver S-NSD 8: Item no. 308901

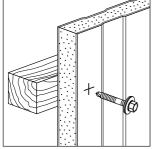
Approvals:

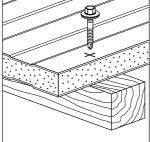



Dimensions

Uses:

The Hilti S-CD self-drilling screw features a threadless shank for relief of pressure on the sandwich panel (no denting) and a threaded section at the head for good sealing washer contact.





Applications

Examples

П	ดล	Ы	Ч	2	to

Design data

Screw-in depth lef

≥ 50 mm

solid ti	onent II mber C	24						
(S10 according to DIN 4074-1)								
Sandwich panel thickness [mm]								
30	40	50	60	70	80	100	120	≥140

Component I sheeting with t _{N1} or t _N S280GD or S320GD	_{l2} [mm]								
(DIN EN 10326)	Shear	force V	R,k [kN]						
0.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
0.55	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
0.63	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
0.75	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
0.88	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
1.00	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
	Tensio	n force	N _{R,k} [k	N]					
0.50	2.60 a)	2.60 a)	2.60 a)	2.60 a)	2.60 a)	2.60 a)	2.60 a)	2.60 a)	2.60 a)
0.55	3.10 a)	3.10 a)	3.10 a)	3.10 a)	3.10 a)	3.10 a)	3.10 a)	3.10 a)	3.10 a)
0.63	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
0.75	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
0.88	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
1.00	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50

For t_{N2} made of S320GD all $V_{R,k}$ values can be increased by 8.3 %.

For t_{N1} made of S320GD all $N_{R,k}$ values, marked with $^{a)}$, can be increased by 8.3 %. Calculating the screw resistance in timber (Component II) according to timber standards.

Max. screw head de	eflection	n u							
[mm]	_	5.0	7.0	9.0	11.0	13.0	18.0	18.0	18.0

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

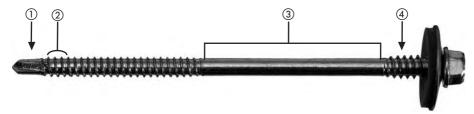
^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
≥50 mm timber	27- 47	6.5 x 100	19	8	100	S-CDW61S6.5x100	375256
≥50 mm timber	37- 57	6.5 x 110	19	8	100	S-CDW61S6.5x110	375257
≥50 mm timber	47- 67	6.5 x 120	19	8	100	S-CDW61S6.5x120	375258
≥50 mm timber	67- 87	6.5 x 140	19	8	100	S-CDW61S6.5x140	375259
≥50 mm timber	87–107	6.5 x 160	19	8	100	S-CDW61S6.5x160	375260
≥50 mm timber	107–127	6.5 x 180	19	8	100	S-CDW61S6.5x180	375261
≥50 mm timber	127-147	6.5 x 200	19	8	100	S-CDW61S6.5x200	284540
≥50 mm timber	147–167	6.5 x 220	19	8	100	S-CDW61S6.5x220	284541
≥50 mm timber	157–177	6.5 x 230	19	8	100	S-CDW61S6.5x230	284597
≥50 mm timber	27- 47	6.5 x 100	22	8	100	S-CDW71S6.5x100	285658
≥50 mm timber	37- 57	6.5 x 110	22	8	100	S-CDW71S6.5x110	285659
≥50 mm timber	47- 67	6.5 x 120	22	8	100	S-CDW71S6.5x120	285660
≥50 mm timber	67- 87	6.5 x 140	22	8	100	S-CDW71S6.5x140	285661
≥50 mm timber	87–107	6.5 x 160	22	8	100	S-CDW71S6.5x160	285662
≥50 mm timber	107–127	6.5 x 180	22	8	100	S-CDW71S6.5x180	285663
≥50 mm timber	127-147	6.5 x 200	22	8	100	S-CDW71S6.5x200	285664
≥50 mm timber	147–167	6.5 x 220	22	8	100	S-CDW71S6.5x220	285665
≥50 mm timber	157–177	6.5 x 230	22	8	100	S-CDW71S6.5x230	285666

Coated carbon steel screws for sandwich panels


Applications

 Carbon steel screws with sealing washers for fastening sandwich panels to steel members or timber framing.

Product description

The screw is made from carbon steel.

The surface of the screw is coated in a special process that increases corrosion resistance compared to standard galvanized carbon steel screws.

- The drill point ① first drills the hole in the part to be fastened and in the supporting member.
- The first threaded section ② then cuts the thread.
- The threadless shank ③ ensures that the screw can be driven without stressing the sandwich panel (no denting).
- The larger thread at the head ④ pulls the sealing washer against the outer skin of the sandwich panel. This ensures that no water can penetrate.

All of these screws can be ordered with coloured heads and sealing washers in colours according to the RAL colour chart.

Screw designations

e.g. S-CD65 C 5.5 x 130	S	for screw fastening
	С	for sandwich panels (C = composite)
	D	for self-drilling screw (D = drilling)
	6	6 – sealing washer \varnothing 19 mm
	5	1 – drill point # 1 = for use on timber framing
		3 - drill point # 3 = 2.0 to 5.5 mm drilling capacity
		5 - drill point # 5 = 3.5 to 12 mm drilling capacity
	С	carbon steel with special finish (C = coating)
	5.5 x 130	screw dimensions (Ø x length)

Further designations:

S-CD**W** 61 C 6.5×180 W applications on timber (W = wood)

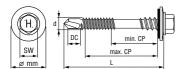
S-CD 63 C 5.5×L coated, case-hardened carbon steel self-drilling screw

Product data

General information

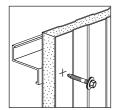
Material specification: Fastening tools

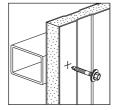
Carbon steel: Case-hardened Screwdriver: Hilti ST1800

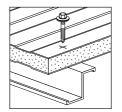

Coating: Kaitex RSP Silver Drive using depth

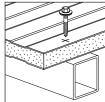
With fitted EPDM sealing washer Ø 19 mm. gauge set: Item no. 304611 Coloured screws available on request. Nut set driver S-NSD 8: Item no. 308901

Dimensions


Uses:


The Hilti S-CD self-drilling screw features a threadless shank for fastening sandwich panels without tension (no denting) and a threaded section below the head for good sealing washer contact with the surface of the sandwich panel.




Applications

Examples

3.150 9/2011

Load data

Design data

Drilling capacity Σ

max. 5,5 mm

•	nt II steel w r S320GD (rith t _{ll} [mm] DIN EN 10326)
2.00	3.00	4.00

Component I steel with t _I [mm] S280GD or S320GD				
(DIN EN 10326)	Shear fo	orce V _{R,k} [kN]	
0.50	1.30	1.30	1.30	
0.63	1.70	1.70	1.70	
0.75	2.00	2.00	2.00	
1.00	2.60	2.60	2.60	
	Tension	force N _{R,I}	ς [kN]	
0.50	2.60	2.60	2.60	
0.63	2.72	3.40	3.40	
0.75	2.72	4.20	4.20	
1.00	2.72	5.07	6.95	

Max. screw head deflection u depending on the sandwich panel thickness [mm]				
40	4.0	3.5	3.0	
50	6.0	4.5	3.5	
60	8.0	6.0	4.0	
70	9.0	7.0	5.0	
80	10.0	8.0	6.0	
100	10.0	8.0	6.0	
120	10.0	8.0	6.0	
≥140	10.0	8.0	6.0	

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
2.0-5.5	22- 47	5.5x75	19	8	100	S-CD63C5.5x75	206965
2.0-5.5	32- 57	5.5 x 85	19	8	100	S-CD63C5.5x85	206966
2.0-5.5	42- 67	5.5 x 95	19	8	100	S-CD63C5.5x95	206967
2.0-5.5	62- 87	5.5 x 115	19	8	100	S-CD63C5.5x115	206968
2.0-5.5	82–107	5.5 x 135	19	8	100	S-CD63 C 5.5 x 135	206969
2.0-5.5	102–127	5.5 x 155	19	8	100	S-CD63C5.5x155	206970
2.0-5.5	122–147	5.5 x 175	19	8	100	S-CD63C5.5x175	206971
2.0-5.5	137–182	5.5 x 210	19	8	100	S-CD63C 5.5x210	206972

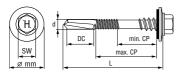
S-CD 65 C 5.5×L coated, case-hardened carbon steel self-drilling screw

Product data

General information

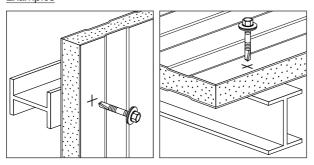
Material specification: Fastening tools

Carbon steel: Case-hardened Screwdriver: Hilti ST1800


Coating: Kaitex RSP Silver Drive using depth

With fitted EPDM sealing washer \varnothing 19 mm. gauge set: Item no. 304611 Coloured screws available on request. Nut set driver S-NSD 8: Item no. 308901

Dimensions


Uses:

The Hilti S-CD self-drilling screw features a threadless shank for fastening sandwich panels without tension (no denting) and a threaded section below the head for good sealing washer contact with the surface of the sandwich panel.

Applications

Examples

Load data

Design data

Drilling capacity Σ

max. 12.00 mm

Compone S280GD o		ith t _{ll} [mm] DIN EN 10326)
3.00	4.00	> 6.00

Component I steel with t _i [mm] S280GD or S320GD (DIN EN 10326)	Shear for	ce V _{R,k} [kN]	
0.50	1.30	1.30	1.30
0.63	1.80	1.80	1.80
0.75	2.30	2.30	2.30
1.00	3.50	3.50	3.50
	Tension fo	rce N _{R,k} [k	N]
0.50	2.50	2.50	2.50
0.63	3.30	3.30	3.30
0.75	4.10	4.10	4.10
1.00	5.10	5.10	5.10

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of $\gamma_F = 1.5$ for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer \varnothing mm	Head size AF	Package contents	Ordering designation	Item no.
3.5-12.0	22- 45	5.5x 90	19	8	100	S-CD65C5.5x90	206973
3.5-12.0	32- 55	5.5 x 100	19	8	100	S-CD65C5.5x100	206974
3.5-12.0	42- 65	5.5 x 110	19	8	100	S-CD65C5.5x110	206975
3.5-12.0	62- 85	5.5 x 130	19	8	100	S-CD65C5.5x130	206976
3.5-12.0	82–105	5.5 x 150	19	8	100	S-CD65C5.5x150	206977
3.5-12.0	102–125	5.5 x 170	19	8	100	S-CD65C5.5x170	206978
3.5-12.0	122-145	5.5 x 190	19	8	100	S-CD65C5.5x190	206979
3.5-12.0	137–175	5.5 x 220	19	8	100	S-CD65C5.5x220	206980

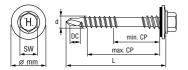
S-CDW 61 C 6.5×L coated, case-hardened carbon steel self-drilling screw

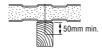
Product data

General information

Material specification: Fastening tools:

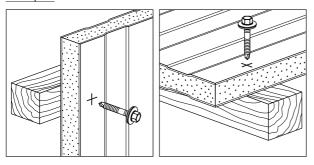
Carbon steel: Case-hardened Screwdriver: Hilti ST1800


Coating: Kaitex RSP Silver Drive using depth


With fitted EPDM sealing washer Ø 19 mm. gauge set: Item no. 304611 Coloured screws available on request. Nut set driver S-NSD 8: Item no. 308901

Dimensions

Uses:


The Hilti S-CD self-drilling screw features a threadless shank for fastening sandwich panels without tension (no denting) and a threaded section below the head for good sealing washer contact with the surface of the sandwich panel.

Applications

Examples

Load data

Design data

Screw-in depth lef

≥ 50.00 mm

Comp	onent II							
	mber C2 cording		1074-1)					
30	40	50	69	70	80	100	120	≥ 140

Component I sheeting with t _{N1} or t _N S280GD or S320GD (DIN EN 10326)		force V	R.k [kN]						
0.50	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
0.55	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
0.63	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
0.75	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
0.88	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
1.00	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
	Tensio	n force	N _{R,k} [k	N]					
0.50	2.50 a)	2.50 a)	2.50 a)	2.50 a)	2.50 a)	2.50 a)	2.50 a)	2.50 a)	2.50 a)
0.55	2.90 a)	2.90 a)	2.90 a)	2.90 a)	2.90 a)	2.90 a)	2.90 a)	2.90 a)	2.90 a)
0.63	3.30	3.30	3.30	3.30	3.30	3.30	3.30	3.30	3.30
0.75	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
0.88	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
1.00	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50

For t_{N2} made of S320GD all $V_{R,k}$ values can be increased by 8.3 %.

For t_{N1} made of S320GD all N_{R,k} values, marked with ^{a)}, can be increased by 8.3 %.

Calculating the screw resistance in timber (Component II) according to timber standards.

Safety factors according to EN 1993-1-3 and CUAP 06.02/07						
	Tension	Shear				
Partial safety concept						
Partial safety factor	$\gamma_{M} = 1.33$	$\gamma_{M} = 1.33$				
Influence of cyclic loading	$\alpha_{\text{cyclic}} = 1.0$	-/-				
Design load	$N_{Rd} = 1.0 \cdot N_{Rk} / 1.33$	$V_{Rd} = V_{Rk} / 1.33$				
Global safety concept						
Global safety factor *	$\gamma_{GLOB} = 2.0$	$\gamma_{GLOB} = 2.0$				
Recommended load	$N_{rec} = 1.0 \cdot N_{Rk} / 2.0$	$V_{rec} = V_{Rk} / 2.0$				

^{*} Note: The global safety factor of 2.0 includes a partial safety factor of γ_F = 1.5 for wind load. For other loads safety factors should be applied in accordance with the appropriate standards.

Screw selection

Screw program

Drilling thickness DC mm	Sandwich panel thickness CP minmax. in mm	Dimensions (dxL) mm	Sealing washer Ø mm	Head size AF	Package contents	Ordering designation	Item no.
≥50 mm timber	27- 47	6.5 x 100	19	8	100	S-CDW61 C 6.5 x 100	206981
≥50 mm timber	37- 57	6.5 x 110	19	8	100	S-CDW61 C 6.5 x 110	206982
≥50 mm timber	47- 67	6.5 x 120	19	8	100	S-CDW61 C 6.5 x 120	206983
≥50 mm timber	67- 87	6.5 x 140	19	8	100	S-CDW61 C 6.5 x 140	206984
≥50 mm timber	87–107	6.5 x 160	19	8	100	S-CDW 61 C 6.5 x 160	206985
≥50 mm timber	107-127	6.5 x 180	19	8	100	S-CDW61 C 6.5 x 180	206986
≥50 mm timber	127-147	6.5 x 200	19	8	100	S-CDW61 C 6.5 x 200	206987
≥50 mm timber	147–167	6.5 x 220	19	8	100	S-CDW 61 C 6.5 x 220	206988
≥50 mm timber	157–177	6.5 x 230	19	8	100	S-CDW 61 C 6.5 x 230	206989

S-AW sealing washers

Product data

General information

Material specification:

e.g.: S-AW04 S16

S for screw fastening

A for accessories

W for washer

04 04 - screw Ø 4.8 mm

05 – screw \varnothing 5.5 mm

06 – screw Ø 6.5 mm

S stainless steel 1.4301 (S for stainless steel)

16 16 - sealing washer outside dia. 16 mm

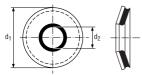
19 – sealing washer outside dia. 19 mm

22 - sealing washer outside dia. 22 mm

Fastening tools:

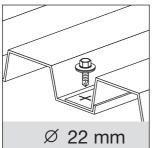
ST1800 screwdriver with depth gauge

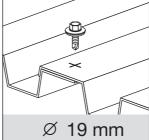
Nut set drivers to fit the screws used S-NSD 8: Item no. 308901 S-NSD10: Item no. 308902 S-NSD3/8": Item no. 308905

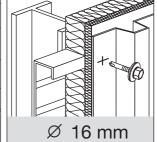


It is essential that the screw be driven correctly in order to ensure that the sealing washer will fulfill its function for many years.

Dimensions


Uses:


For all outdoor applications where the fastening is exposed to the weather.



Applications

Examples

Sealing washer selection

Sealing washer program

Sealing v	washer program			
Outside Ø d1 mm	$\begin{array}{l} \text{Inside } \varnothing \\ \mathbf{d}_2 \\ \text{mm} \\ = \text{screw } \varnothing \end{array}$	Package contents	Ordering designation	Item no.
16	4.8	200	S-AW 04 S 16	284880
16	5.5	200	S-AW 05 S 16	284883
16	6.5	200	S-AW06S16	284886
19	4.8	200	S-AW 04 S 19	284881
19	5.5	200	S-AW 05 S 19	284884
19	6.5	200	S-AW 06 S 19	284887
22	4.8	200	S-AW 04 S 22	284882
22	5.5	200	S-AW 05 S 22	284885
22	6.5	200	S-AW 06 S 22	284888

Hilti supplies a complete, perfectly coordinated system for dependable decking and siding fastening. All of the tools and components of this system - from the Hilti ST 1800 and Hilti ST2500 decking and siding screwdrivers to the revolutionary SDT30 and SDT25-15 stand-up extensions for decking fastening using collated screws - are precisely matched for maximum efficiency.

Professional, on-the-spot advice from fastening specialists, efficient logistical solutions, good availability and short delivery times tages through every phase of the project. Hilti supplies everything you need for the job: highly efficient tools for maximum productivity at each step, superior fastening

Hilti SDT 30/SDT 25-15

The high-speed decking specialist

- Up to three times faster with this stand-up extension for the Hilti ST 1800 and collated Hilti metal construction screws.
- Work faster for longer: Allows the operator to work in a comfortable, much less tiring, upright position.

Hilti ST 1800

The power driver for decking and siding

- Drives metal construction screws reliably.
- Without sealing washer: The torque clutch prevents overtightening and screw breakage.
- With sealing washer: The depth gauge ensures correct compression of the sealing washer for a watertight fastening.
- No burning of the screw point thanks to optimum drilling / driving speed for thicknesses up to 12 mm.
- The high-performance screwdriver for use with the SDT25/SDT25-15 stand-up tool for decking applications.

Hilti ST 2500

The lightweight driver, ideal for siding work

- High spindle speed for fast drilling in materials up to 6 mm.
- Perfectly balanced no heavy front end.
- Drives metal construction screws with sealing washers reliably: The depth gauge ensures correct compression of the sealing washer for a watertight fastening.

bring Hilti users genuine cost-saving advansolutions and truly comprehensive service.

SDT 30 stand-up tool

For driving collated screws (the magazine holds 2 strips of 25 self-drilling screws)

Ordering designation	Item no.
Hilti SDT30 stand-up tool	304457
for Europe, Asia, Africa	
Hilti SDT 30 HNA stand-up tool	387785
for USA, Canada, Latin America	

Comprising: stand-up tool, screw magazine, bit holder, hex. insert, supply cord strain relief hook, operating instructions. Packed in a cardboard box.

Accessories

Description	Package contents	Ordering designation	Item no.
Screw magazine	1	Magazine	387598

Supply cord strain relief hook 1	Strain relief hook	305726
for SDT30, SDT25-15		

Tools

Description	Package contents	Ordering designation	Item no.
Stand-up tool insert	3	S-NSD8DT	304413
for SDT30			
Stand-up tool insert	3	S-NSD5/16DT	304414
for SDT30 HNA			
Stand-up tool bit holder	1	S-BH435DT	304415
for SDT30, SDT25-15			

SDT25-15 stand-up tool

For driving collated screws with pressed-on flange (the magazine holds 2 strips of 20 collated self-drilling screws)

Ordering designation

Item no.

Hilti SDT25-15 stand-up tool

284484

Comprising: stand-up tool, screw magazine, bit holder, hex. insert, supply cord strain relief hook, operating instructions.

Packed in a cardboard box.

Accessories

Description	Package contents	Ordering designation	Item no.
Screw magazine	1	Magazine15	284486
for SDT25-15			

Supply cord strain relief hook 1 Strain relief hook 305726

for SDT25-15 + SDT25

Bit holders

Description	Package contents	Ordering designation	Item no.
Stand-up tool insert	3	S-NSD10DT	284485
(ODTOE 45			

for SDT25-15

Stand-up tool bit holder 1 S-BH435DT **304415** for SDT25-15, SDT25

Tools for metal construction

ST1800 metal construction screwdriver

For torque and depth gauge controlled screw fastening.

Description	Item no.
Hilti ST 1800 in toolbox	378557
Complete with:	
depth gauge, 4 m supply cord, operating instructions	
Hilti ST 1800 in cardboard box	378548
Complete with:	

ST2500 metal construction screwdriver

depth gauge, 4 m supply cord, operating instructions

For depth gauge controlled screw fastening.

Description	Item no.
Hilti ST 2500 in toolbox	378575
Complete with:	

Complete with:

Toolbox

for ST1800 + ST2500

depth gauge, 4 m supply cord, operating instructions

Hilt	ti ST2	500 iı	ı ca	rdboa	rd box			378566

Complete with: depth gauge, 4 m supply cord, operating instructions

Accessories Description	Package contents	Ordering designation	Item no.
Scaffold hook	1	S-SH/ST1800	378884
only for ST1800			
Belt hook	1	hook	240719
for ST1800 + ST2500			
Depth gauge set	1	S-TA SET	304611
for ST1800 + ST2500			
for screws with sealing washers up to \varnothing 23 mm			
for use with bit holder and bit (PH, PZD, TX etc.)			
Belt bag	1	Belt bag	304455
for ST1800 + SDT25			
Belt bag for collated screws			

1

Scaffold hook

Depth gauge set

257395

3.164

Toolbox

Nut set driver

Screwdriving bits

Nut set drivers for the ST1800 + ST2500

For screws with hex. head	Package contents	Ordering designation	Item no.
7 mm	1	S-NSD 7	308900
8 mm	1	S-NSD 8	308901
10 mm	1	S-NSD 10	308902
3/811	1	S-NSD 3/8"	308905
Description	Package contents	Ordering designation	Item no.
Bit holder, length 75 mm	1	S-BH75M	257258

for ST1800 + ST2500, magnetic

Bit dispenser 1 Bit safe, heavy 334032

for ST1800 + ST2500

Contents:

Bit holder, nut set drivers 8 mm, 10 mm, 3/8"

Bits:

PH1 3x, PH2 5x, PH3 2x, PZ1 3x, PZ2 5x, PZ3 2x, PZ4 1x, TX10 1x, TX15 1x, TX20 1x, TX25 1x, TX30 2x, TX40 4x

Bit spender

Hilti measuring systems

Quick, accurate horizontal and vertical alignment: Hilti PR25 rotating laser

Highly accurate distance measurement: Hilti PD40 laser range meter

Hilti direct fastening systems

Hilti DX76 PTR: The ideal powder-actuated fastening tool for fastening decking and siding.

The fully-automatic, stand-up decking fastening tool for maximum productivity with minimum effort: Hilti DX 860 ENP

Hilti drilling and demolition systems

Top performance for drilling anchor holes for columns and purlins and for general chiseling work: Hilti TE56-ATC combihammer.

Hilti UD16 / UD30 electric drill: High torque and high power in reserve for drilling in wood and steel.

Hilti screw fastening systems

Hilti ST1800:

The high-performance screwdriver for fastening decking and siding. Three times faster on decking with the Hilti SDT25 stand-up extension.

Hilti ST2500:

The lightweight screwdriver with the high spindle speed, ideal for siding fastening work.

Hilti diamond systems

For precisely positioned, neatly drilled holes, even through rebars: the hand-held Hilti DDEC-1 with revolutionary

Topspin technology.

Hilti cutting and grinding systems

Cutting profile metal sheets, sections and pipes, even where access is difficult: Hilti WSR650-A cordless reciprocating saw

Hilti installation systems

Hilti supplies a comprehensive range of quick-to-assemble installation system products for use in steel construction.

Hilti WSJ850-EB orbital-action jig saw with a range of perfectly-matched saw blades for straight and curved cuts in metal and sandwich panels.

Hilti anchor systems

Renowned throughout the world: the Hilti HSL-3 heavy-duty anchor.

Hilti high-performance angle grinders with vibration-absorbing side handle – for cutting and grinding in the metalworking trades.

Hilti firestop systems and foams

Hilti supplies a range of innovative, worldwide approved firestop systems backed up by on-the-spot advice on all aspects of passive fire prevention.

Part 4:

Direct fastening principles and technique

8/2011 4.1

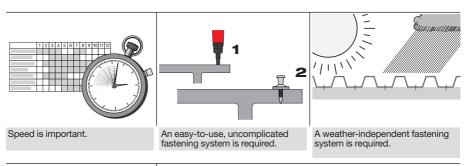
Introduction		1
1.1 Definitions and general terminology1.2 Reasons for using powder or gas-actuated fastening1.3 Direct fastening applications	4.5 4.5–4.6 4.7–4.9	
The direct fastening system		2
2.1 Fasteners2.2 Manufacturing process2.3 Fastener raw material2.4 Powder- and gas-actuated tools2.5 Cartridges (powder loads, boosters)	4.11–4.12 4.12–4.13 4.13 4.14–4.15 4.16–4.17	
Health and safety		3
3.1 Operator safety3.2 Fastening safety3.3 Functional safety	4.18–4.21 4.22–4.23 4.24	
Corrosion		4
4.1 Different forms of corrosion4.2 Corrosion characteristic of powder- and gas-actuated fasteners4.3 Fastener selection	4.25–4.26 4.27–4.28 4.29	
Steel base material		5
 5.1 Anchoring mechanisms 5.2 Factors influencing the resistance to pull-out 5.3 Suitability of the steel for fastening 5.4 Application limit diagrams 5.5 Thin steel base material 5.6 Types of load and modes of failure 5.7 Effect of fasteners on structural steel 	4.30–4.31 4.32–4.37 4.37 4.38 4.39 4.40–4.46 4.47–4.51	
5.7 Eliect of idsteriers on structural steel	4.47-4.51	

8/2011 4.3

Concrete base material		6
6.1 Anchoring mechanisms	4.52-4.53	
6.2 Factors influencing the resistance to pull-out	4.54-4.57	
6.3 Effect of time on pull-out resistance	4.57	
6.4 Effect on concrete components	4.58	
Masonry base material		7
7.1 General suitability	4.59	
Temperature effects on the fastening		8
8.1 Effect of low temperature on fasteners	4.60-4.61	
8.2 Effect of low temperatures on fastenings to steel	4.61-4.62	
8.3 Fire rating on fastenings to steel	4.63-4.64	
8.4 Fire rating on fastenings to concrete	4.65-4.66	
Design concepts	4.67-4.68	9
Determination of technical data for		
fastening design		10
10.1 Fastenings to steel	4.69	
10.2 Profiled sheet fastenings	4.70	
10.3 Fastenings to concrete (standard DX / GX)	4.71-4.73	
10.4 DX fastenings to concrete (DX-Kwik)	4.73-4.74	
10.5 Fastener design in the USA and Canada	4.74	
Tips for users ("trouble shooting")	4.75–4.78	11
Approval listing	4.79–4.81	12

1. Introduction

1.1 Definitions and general terminology


Hilti direct fastening technology is a technique in which specially hardened nails or studs are driven into steel, concrete or masonry by a piston-type tool. Materials suitable for fastening by this method are steel, wood, insulation and some kinds of plastic. Fastener driving power is generated

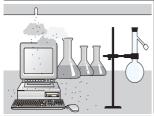
by a power load (a cartridge containing combustible propellant powder, also known as a "booster"), combustible gas or compressed air. During the driving process, base material is displaced and not removed. In Hilti terminology, **DX** stands for "powder-actuated" and **GX** for "gas-actuated" systems.

1.2 Reasons for using powder- or gas-actuated fastening

The illustrations below show some of the main reasons why many contractors take

advantage of the benefits of powder or gasactuated fastening.

Electric power is not available or electric cables would hinder the work.

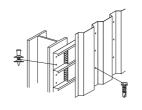


A complete fastening system with assured strength is required.

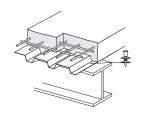
Drilling is not viable because of noise.

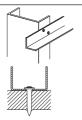
Drilling would be too difficult.

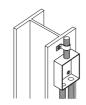
Drilling would cause too much dust.

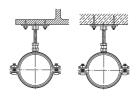

1.3 Direct fastening applications

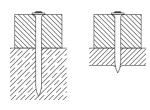
Typical applications for powder- or gas-actuated fastening are shown in the illustrations below:

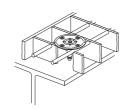

- Fastening thin metal sheets: roof decking wall liners and floor decking
- Fastening thicker steel members:
 e.g. metal brackets, clips
- Fastening soft materials such as wooden battens or insulation to steel, concrete or masonry
- Threaded studs for suspended ceilings, installing building services, bar gratings or chequer plate floors
- Connections for composite structures: fastening nailed composite shear connectors

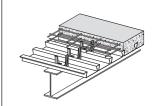



Wall liners


Floor decking


Metal brackets, clips and tracks


Fixtures for mechanical and electrical installations


Hangers with threaded connectors

Wooden battens fastened to steel or concrete

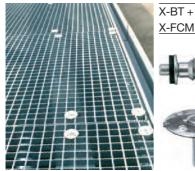
Grating fastenings

Shear connectors

Hilti direct fastening systems are specially designed for each application and trade.

Key applications and the corresponding fastening systems are shown below.

Roof and floor decking in steel & metal construction X-ENP-19 L15



Gratings in the petrochemical and other industries

DX 351 BTG

Interior partition walls (drywall) in interior finishing

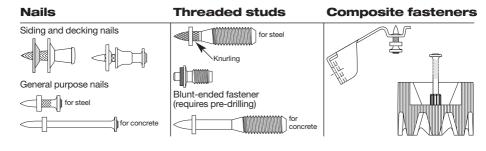
4.8 8/2011

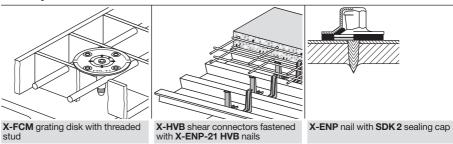
Concrete forms in building construction

Conduit clips and ties in mechanical and electrical installations

2. The direct fastening system

The fastener, tool and driving energy form a **fastening system** with its own specific characteristics. Examples of Hilti direct


fastening system components are shown below.



2.1 Fasteners

Fasteners can be classified in three general types: nails, threaded studs and composite fasteners.

Multi-part fasteners

The nails used (also known as drive pins) are of a special type equipped with washers to meet the needs of the application and to provide guidance when driven. Threaded studs are essentially nails with a threaded upper section instead of a head. Composite fasteners are an assembly consisting of a nail with an application-specific fastening component such as a clip, plate or disk made of metal or plastic.

Siding and decking nails can be recognized by their washers which are specially designed to hold down the metal sheets and to absorb excess driving energy. Fasteners designed for driving into steel usually have knurled shanks which increase their pull-out resistance. Fasteners for use on concrete have longer shanks than those for use on steel. Threaded studs may have either a metric (M6, M8 or M10) or Whitworth (1/4", 5/16" or 3/8") thread.

Nails and threaded studs are commonly zinc-plated (5 to 16 μ m zinc) for resistance to corrosion during transport, storage and construction. As this degree of protection is inadequate for long-term resistance to corrosion, use of these zinc-plated fasteners is limited to applications where they are not exposed to the weather or a corrosive atmosphere during their service life. The zinc

layer on fasteners driven into steel is, in fact, a disadvantage in that it reduces pull-out resistance. For this reason, the thickness of zinc on the fastener must be optimized to ensure good corrosion protection as well as high holding power. During production, tight control of the galvanizing process is necessary to prevent excess zinc thickness and thereby poor fastening performance.

Fasteners must be 2 to 3 times harder than the material into which they are driven. The tensile strength of structural steel is com-

monly between 400 and 600 MPa. Fasteners for use on steel thus require a strength of approximately 2000 MPa. As Rockwell hardness is much easier to measure than strength, but good correlation exists between hardness and strength, this characteristic is used as a parameter in the specification and manufacturing of the fasteners. In the table below, HRC hardness is given for a range of tensile strengths (DIN 50150).

Tensile strength								
(MPa)	770	865	965	1810	1920	1995	2070	2180
HRC	20.5	25.5	30	52.5	54	55	56.5	58

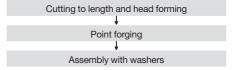
2.2 Manufacturing process Standard hardened steel fasteners

Almost all powder and gas-actuated fasteners used throughout the world are manufactured from carbon steel wire which is subsequently thermally hardened to provide the strength needed for driving into steel and concrete. In nail manufacturing, shank diameter is determined by the wire diameter used. Threaded studs are made from wire corresponding to the required thread diameter. The manufacturing process, which is summarized in the diagram below, consists of cutting the wire to length, shaping the head, knurling, forging or thermo pulling the point, hardening, galvanizing and assembling with washers.

The process of hardening the steel to more than HRC 50 combined with the zinc plating presents a risk of hydrogen embrittlement.

This risk is mitigated by heat-treating the galvanized product at the optimum temperature for the correct time. Galvanized and heattreated fasteners are subjected to impact bending tests to check the effectiveness of the process. Depending on their intended application, some fasteners are additionally sampled and tested under tension and shear.

Manufacturing Process Standard zinc-coated fasteners

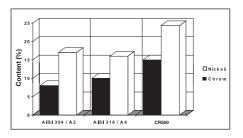


Stainless steel fasteners

Hilti introduced the first powder-actuated stainless steel fastener in 1994. These fasteners, which are not thermally hardened, are manufactured from special stainless steel wire with an ultimate tensile strength of 1850 MPa. One effect of using steel of such high strength as a raw material is that the forming and forging processes present greater technical difficulties. These fasten-

ers, on the other hand, suffer no risk of hydrogen embrittlement and their strength decreases only very slightly when subjected to high temperatures such as in a fire.

Manufacturing Process Stainless Steel Fasteners

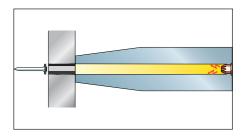

2.3 Fastener raw material

Hilti standard zinc plated fasteners are made from carbon steel wire with an ultimate tensile strength of 590 to 760 MPa.

Hilti **X-CR / X-CRM / X-BT** stainless steel fasteners are made from high-strength nitrogen alloyed stainless steel wire (Hilti designation CR500).

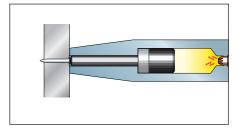
Nickel and chromium are the components of stainless steel that make it resistant to corrosion. CR500 steel is compared to commonly used stainless steels like AISI 304 and 316 (European A2 and A4) in the graph at the right. Note that CR500 steel contains considerably more nickel and chromium than both 304 and 316.

Another comparison of interest is the difference in ultimate tensile strength, as shown in the graph at the right.


2.4 Powder- and gas-actuated tools

Definitions

In the ANSI A10.3-2006 standard, two basic types of tool are referred to: <u>direct-acting</u> and <u>indirect-acting</u>. The two types are defined by the manner in which the energy is transferred from the hot expanding gases to the fastener.


Direct-acting tool:

The expanding gases act directly on the fastener and accelerate it to a velocity of 400 to 500 m/s (1300 to 1600 fps). This velocity places the tool in the high-velocity class, thereby subjecting it to more stringent rules for usage.

Indirect-acting tool:

The expanding gases act on a captive piston that drives the fastener, which in Hilti indirect-acting tools reaches a velocity of less than 100 m/s (328 fps). Because of the lower velocity, the possibility and extent of injury due to incorrect operation is very much reduced. Rules for usage are less stringent than for high-velocity tools.

ANSI A10.3-2006 classifies powder-actuated tools according to velocity. With increasing velocity, rules for usage become more stringent, for example with regard to equipping the tools with shields. The lowest velocity tool capable of performing the application should be used.

Class of powder-actuated tool	test velocity	Maximum single test velocity in m/s [fps]
Low-velocity	100 [328]	108 [354]
Medium-velocity	150 [492]	160 [525]
High-velocity	>150 [492]	>160 [525]

Hilti Tools

All Hilti tools supplied for construction applications are low-velocity, indirect-acting tools.

Indirect-acting tools operate according to one of three different principles – co-acting, impact or contact operation – which each affect the operating characteristics and the application limit of the system. It should be noted that 100% co-acting operation can be

achieved by pushing the fastener all the way back against the piston with a ramrod or, if the tool is so designed, with a built-in ramrod mechanism. Tools with nail magazines do not achieve 100% co-action because of the need for clearance between the piston end and the collated nail strip. Some single-shot tools allow the operator to make an impact-type tool work as a co-acting tool by using a ramrod.

Operating principle	Characteristics	
Co-acting operation	 X > 0; Y = 0 Highest application limit Lowest recoil 	X
Impact operation	 X = 0; Y > 0 Lower application limit Higher recoil 	Y
Contact operation	 X = 0; Y = 0 Lowest application limit Highest recoil 	

2.5 Cartridges (power loads, boosters)

Cartridges for indirect-acting tools are available in various standard sizes and each size is available in up to 6 power levels. In the United States, the powder in a cartridge, the sensitivity of the primer, and the cartridge dimensions are governed by technical data published by the Powder-Actuated Tool

Manufacturers Institute, Inc. (PATMI). PATMI defines the power level by the velocity measured in a standard test in which a standardized 350 grain [22.7gram] cylindrical slug is fired from a standardized apparatus. The identification and limitations of use are addressed in ANSI A10.3-2006.

PATMI colour codes, power levels and definition of cartridges

Size	Colour code	Power level	Velocity of 35 ft./sec.	0 grain slug [m/sec.]	Calculated minimum	l energy (jou average	ıles) maximum
6.8 / 11	Gray	1	370 ± 45	[113 ± 13.7]	111	144	182
[Cal. 27 short]	Brown	2	420 ± 45	[128 ± 13.7]	148	186	228
	Green	3	480 ± 45	[146 ± 13.7]	200	243	291
	Yellow	4	560 ± 45	[171 ± 13.7]	280	331	386
	Red	5	610 ± 45	[186 ± 13.7]	337	392	452
	Purple / black	6	660 ± 45	[201 ± 13.7]	399	459	524
6.8 / 18	Green	3	550 ± 45	[168 ± 13.7]	269	319	373
[Cal. 27 long]	Yellow	4	630 ± 45	[192 ± 13.7]	361	419	480
	Blue	4.5	725 ± 45	[221 ± 13.7]	488	554	625
	Red	5	770 ± 45	[235 ± 13.7]	554	625	700
	Purple / black	6	870 ± 45	[265 ± 13.7]	718	798	883

The German DIN 7260 standard specifies cartridge dimensions, colour codes and power levels, which are defined in terms of energy delivered when a cartridge is fired in

a standardized apparatus. DIN 7260 specifies a 3.66 gram slug with a somewhat more complex geometry than that of the PATMI slug.

DIN 7260 colour codes, power levels and definition of cartridges

Size	Colour code	Power level	Specified energy (joules)
6.8 / 11	White	weakest	120 ± 50
	Green	weak	200 ± 50
	Yellow	medium	300 ± 50
	Blue	heavy	400 ± 50
	Red	very heavy	450 ± 50
	Black	heaviest	600 ± 50
6.8 / 18	Green	weak	200 ± 50
	Yellow	medium	400 ± 50
	Blue	heavy	500 ± 50
	Red	very heavy	600 ± 100
	Black	heaviest	800 ± 100

In order to achieve interchangeability of the tools and cartridges from various manufacturers, PATMI provides guidelines on cartridge dimensions. Manufacturers optimize the cartridge characteristics for their tools in order to achieve functional reliability and long life.

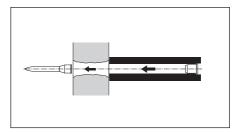
Interchanging of components is mentioned in 7.10 of ANSI A10.3-2006: "Only

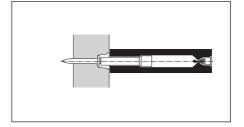
those types of fasteners and power loads recommended by the tool manufacturer for a particular tool, or those providing the same level of safety and performance, shall be used."

It is the responsibility of the user of powderactuated products to comply with this requirement.

3. Health and safety

The safety of powder-actuated fastening systems can be examined in terms of three general safety characteristics:


- Operator safety refers to safeguarding the operator and bystanders.
- Fastening safety is a measure of the adequacy of the in-place fastenings.
- Functional safety refers to the operability of the tool, especially the operator safety devices, under construction site conditions.


3.1 Operator safety

Hilti powder-actuated systems incorporate five main design features for maximum operator safety – the DX piston principle, drop-firing safety mechanism, contact pressure safety mechanism, trigger safety mechanism and the unintentional firing safety mechanism.

Hilti DX piston principle

One of the main concerns about the use of explosive powder-filled cartridges to drive fasteners is what happens if the base material is missed by the fastener. The piston principle ensures that the energy from the propellant in the cartridge is transferred to a piston, the accelerated mass of which then drives the fastener. Because the piston is captive within the tool, roughly 95% of the driving energy is absorbed by the tool in the event of the fastener missing the base material. Thus, the velocity of a fastener that misses the base material is far lower than the velocities associated with fasteners from high-velocity tools (tools that do not operate with the piston principle).

Drop-firing safety

The drop firing safety mechanism prevents the tool from firing if dropped unintentionally. This mechanism is so designed that the tool, cocked or uncocked, will not fire when dropped at any angle onto a hard surface.

Trigger safety

This mechanism ensures that pulling the trigger alone cannot cause the cartridge to fire. The trigger in a Hilti DX powder-actuated tool is uncoupled from the firing pin mechanism until the tool is fully compressed against the work surface.

Contact pressure safety

A Hilti tool is made ready for firing by compressing it against the work surface. This requires a force of at least 50 N [11.2 pounds]. Tools with large baseplates that can be easily gripped with the hand, for example the DX 76 and the DX 460 SM, have an additional surface contact pin that must also be pushed back to allow firing. This is designed to prevent the tool firing when its nosepiece is not in contact with the work surface.

Unintentional firing safety

Hilti DX tools cannot be fired by pulling the trigger and then compressing the tool against the work surface (also known as "bump firing"). These tools can be fired only when they are (1) compressed against the work surface and (2) the trigger is then pulled.

Cartridge (power load or booster)

The propellant powder in the cartridge can only burn if the primer burns first. Burning of the primer is initiated by an impact applied with the correct velocity at the correct location of the cartridge. The propellant and primer are protected from external influences by the metal casing of the cartridge.

Magazine strip

Collated cartridges in strips of 10 (or 40) offer greater safety because the plastic strip helps protect the cartridge cases from impacts and ensures separation between the cartridges.

Packaging

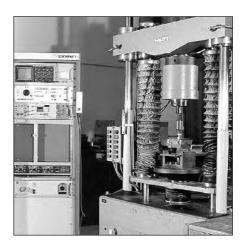
The packaging must contain provisions with respect to tool compatibility.

Promotion of operator safety

Safety of the operator and bystanders is promoted by use of the appropriate safety equipment and by following the instructions in the operator's manual. By supplying the powder-actuated tool in a lifetime kit box with space for eye protectors, operator's manual, etc., retention and use of the safety equipment is much improved.

Tool compatibility information and installation guidelines printed on the cartridge and fastener packaging supplement the operator's manual.

Hilti organizes operator training courses in which general safety measures for powder-actuated tools are covered as well as measures specific to each model of tool used. In some countries, certificates or operator IDs are issued upon completion of training courses to encourage attention to safety by operators and to allow safety officials to enforce training requirement regulations.


3.2 Fastening safety

Fastening safety depends on a correct prediction of the loads and the conditions to which the fastening is subjected and a correct prediction of fastening performance. The necessary conditions for predictable fastening performance are:

- 1. The fastening system must have been engineered and tested for the application.
- The quality of the fastening system components used must correspond to the quality of those originally tested.
- The fastenings must be made as foreseen in the engineering of the system or in the same way as when the system was tested.


Engineering and testing

Sources of information about the engineering and testing of a fastening system are the manufacturer's technical literature, test reports, official approvals and publications in technical journals. If an "or equal" clause is used in the specification, then approval of any alternate fastening system should be made contingent on provision of documentation showing that the proposed fastening system has been engineered and tested for the given application.

Production quality

The need for the materials used on the jobsite to correspond to the design of the product and to be of the same quality as those tested is clear. This requires the manufacturer to have a production quality control system, which is necessary for ISO 9001 certification.

Quality of installation

The use of fastening systems for which the manufacturer provides application guidelines and a technical advisory service helps ensure that fasteners will be installed correctly. The concept of controlling the quality of the work must include some feature that can be measured and that feature must indicate the performance of the fastenings.

The primary means of checking the quality of a powder-actuated fastening is by checking the stand-off over the surface of the fastened material. For fasteners that do not allow an accurate visual check of the standoff, the use of a stand-off template is recommended. In some cases tensile testing of fasteners on jobsites is necessary. Threaded studs and some decking fasteners with suitable head design can be tensile-tested in their final position on a jobsite. Other fasteners like simple flat-headed nails have to be driven through a pull-over test specimen and then tested.

Checking the standoff of an X-EDN 19 roof deck fastening with a plastic template

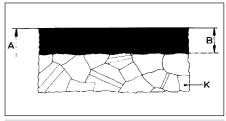
Pull-out test of an ENP fastening with a Mark V tester and ENP adapter

3.3 Functional safety

Construction professionals demand fastening systems that are dependable under the toughest jobsite conditions. The goal of functional reliability has to be integrated into the development, manufacture, sales and service of a fastening system. The development of a new fastening system must consider the operating conditions and the degree of reliability required. During development, system components and prototypes are tested to determine if they will function reliably. Pilot production lots are tested by contractors on their jobsites to ensure that the design can be produced in a quality that will function. Quality control is integrated in the manufacturing process to ensure that all components are manufactured according to specifications. Salespersons are trained so that they can advise their customers as to the proper system to use for the application. Tool repair and maintenance training help keep the fastening systems functioning.

Lifetime testing of the DX powder-actuated tool with nail magazine

4. Corrosion


This chapter gives a brief overview about corrosion, with a main focus on specific aspects of high strength material where powder- and gas-actuated fastener are

made of. More details on corrosion are described in the Hilti corrosion brochure "Corrosion Resistant Fastenings, Edition May 2000".

4.1 Different forms of corrosion

Depending on the environmental conditions and material, different forms of corrosion will occur.

1. Homogeneous corrosion

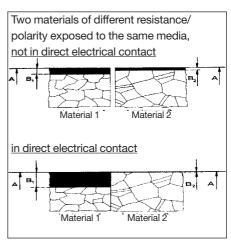
A = starting level

B = reduction of the thickness due to homogeneous corrosion

K = grain (crystal), the structure is determined by a large number grains

Homogeneous material reduction

Most of the commonly observed material degradation can be traced back to this corrosion form, characterized by a more or less homogeneous surface reduction. This form of corrosion is not of great importance for DX- / GX-fasteners.


The amount of material loss due to corrosion can be approximated in laboratory scale experiments. The so-called corrosion rate is generally listed as mm/year or g/m² h (laboratory values). The mean corrosion rate of low alloyed steel and zinc, for example, is shown in following table.

Atmosphere	Mean surface removal zinc coatings (dechema handbook)	/ year low alloyed steel		
rural	1– 2 μm	10- 60 µm		
town	3– 5 μm	30– 70 μm		
industrial	6–10 µm	40–160 µm		
marine	5– 9 µm	60–230 µm		

2. Contact corrosion

Corrosion is accelerated in situations where an electrochemically "less noble" material is in contact with a "noble" material. The material loss of the noble partner is reduced, the loss of surface area of the less noble partner is increased. A prerequisite for this form of corrosion is an electrically conductive connection between these two materials.

A Starting level
B₁, B₂ Reduction of the thickness depending on the material's resistance

Surface area ratio

Whether or not contact corrosion occurs also depends on the surface area ratio.

A)

If the surface of the less noble material (1) is greater than that of the more noble material (2), it will act as a very small cathode and the current density on the "large anodic" less

noble material is thus very small. Furthermore, this also implies a very low rate of corrosion of the less noble metal due to electrochemical effects.

B)

However, if the surface of the less noble material is smaller than that of the more noble material, the rate of corrosion of the less noble metal will be very high.

4.2 Corrosion characteristics of powder and gas-actuated fasteners

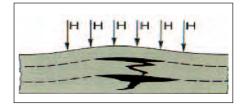
Hilti galvanized carbon steel fasteners

DX fasteners are galvanized with a zinc plating thickness of approx. 2 to 16 microns. The lifetime of this form of corrosion protection depends on the environmental-conditions and therefore on the rate of corrosion

of the zinc layer. Most commonly observed

material degradation can be traced back to homogeneous corrosion, characterized by a more or less homogeneous surface reduction.

The life expectancy of galvanized fasteners and nails in wet atmospheres is therefore very short.


Application provisions to observe potential risk of failure due to hydrogen embrittlement

All Hilti powder and gas-actuated fasteners are manufactured from a high-strength material and, accordingly, are exposed to the risk of corrosion-induced hydrogen embrittlement.

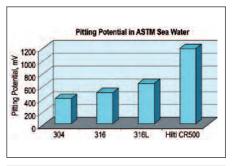
When zinc-plated fasteners are used in wet or corrosive surroundings, the zinc plating is attacked and the fastener can corrode. Cracks will form in the fastener and it may suddenly fail even under a very low static load. This phenomenon, resulting in a high risk to the structure, is unpredictable and not controllable.

Hydrogen embrittlement

- Brittleness due to dissolution of hydrogen in the metal lattice
- Inter-crystalline (between the grains)
- Tensile stress
- Associated with hardened high-strength steel

Example of incorrect application

Zinc-plated powder-actuated fastener used in corrosive industrial environment



Hilti X-CR / X-BT stainless steel fastener (CR500 material)

Tests carried out by independent authorities (FMPA Stuttgart, RWTH Aachen) clearly indicate the superior properties of the CR500 material when compared to AISI 316 (A4) or AISI 304 (A2). The superior properties with regard to pitting potential are mainly due to the higher molybdenum, nickel, chromium and nitrogen content of the steel. Consequently, CR500 material can be classified in the same corrosion category as AISI 316 (A4).

On the basis of results from field tests carried out, for example, in industrial atmospheres, road tunnels and in sea water over many years, it has been concluded that AISI 316 (A4) grade steel provides adequate corrosion resistance for use in "corrosive conditions in industrial and marine air". CR500 also provides this resistance with great certainty.

Contact corrosion

Contact corrosion, where stainless steels are concerned, is not a matter of concern. Stainless steels are higher in the galvanic series, i.e. more noble, than most generally used materials such as aluminum, zinc and steel. Stainless steel in contact with these materials thus benefits from cathodic pro-

tection. This type of contact therefore generally has a favourable effect on the corrosion properties of stainless steels.

The "noble" stainless steel fastener has a very much lower rate of corrosion than the "less noble" base material, and the material of the component fastened, due to electrochemical effects.

Heavily corrosive environments

In some heavily corrosive environments, e.g. in road tunnels in the Alps (salt and air pollution) and in applications in the chemicals industry in particular, where chlorides and acid compounds are combined and the fastening has a high safety relevance, use of CR500 steel is not permissible.

This combination of "maritime" environment as well as more acidic and oxidizing active constituents in the electrolyte film are the reason why conventional stainless steels of the AISI 304 and AISI 316 grades can suffer

pitting corrosion and stress corrosion cracking as a further consequence. This is one of the most dangerous forms of corrosion. This corrosion-induced failure can only occur if particular media and a tensile stress are present. Existing residual stress may be sufficient to induce stress corrosion cracking.

4.3 Fastener selection

The subject of corrosion has a major influence on the suitability of a fastener and therefore also on fastener selection. For applications with no safety relevance, zinc-plated fasteners made of normal carbon steel can be used without restriction.

For safety-relevant, permanent fastenings, the following table shows the suitability (

under different atmospheric conditions.

Condition for use	Fastener: zinc-plated carbon steel	CR500 stainless steel
Indoors, rooms without condensation		
and corrosive gases		\square
Indoors, with heavy condensation	\boxtimes	
Short-term exposure to weather (i.e. during construction)		
Outdoors, coastal area or industrial atmosphere		
without chlorides	\boxtimes	
Highly-corrosive surroundings		
(indoor swimming pools, highway tunnels)	\boxtimes	\boxtimes

 $|\times|$ = not suitable

For safety-relevant, permanent fastenings:

Use Hilti galvanized DX- and GX- fasteners only for dry, indoor applications. Use of Hilti stainless steel fasteners (X-CR, X-CRM, X-BT) is recommended in more corrosive and/or wet atmospheres.

Fasteners used in wet areas must be at least as noble or, better, more noble than the fas-

tened component. The effect of contact corrosion is shown in the table below.

Fastened component / base material	Fastener: zinc-plated carbon steel	CR500 stainless steel
	Carbon steel	Stairliess steel
Construction steel (uncoated)		
Galvanized steel sheet		
Aluminium alloy		
Stainless steel sheet		

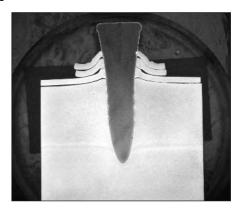
= Heavy corrosion of fastener

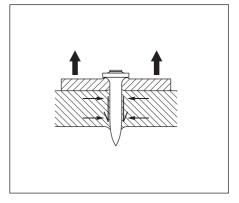
5. Steel base material

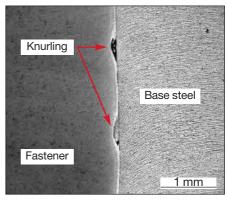
5.1 Anchoring mechanisms

The following four mechanisms cause a DX- / GX-fastener to hold when driven into steel:

- clamping
- keying
- fusing (welding)
- soldering


These mechanisms have been identified and studied by analyzing pull-out test data and by microscopic examination of fastening cross-sections.


Clamping

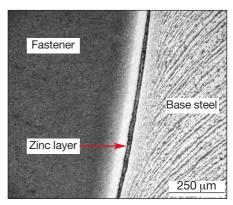

As a fastener is driven, the steel is displaced radially and towards both the entry and opposite surfaces. This results in residual pressure on the surface of the nail, which leads to friction or clamping. Clamping is the primary anchoring mechanism of throughpenetrating fasteners. This is indicated by the fact that when through-penetrating fasteners are extracted, the pull-out force decreases only slowly over several millimeters of displacement.

Keying

The keying mechanism is possible when the fastener is knurled, that is, it has fine grooves along the shank in which zinc and particles of base steel accumulate during the driving process. Microscopic examination of cross sections has shown that the grooves are not completely filled. Keying is an especially important anchoring mechanism for fasteners that do not penetrate right through the base material.

Fusing (welding)

Complete fusing of the fastener with the base steel is indicated by portions of base material clinging to the extracted fastener as well as by the decarbonized zone. Fusing or welding is observed mostly at the point of a fastener where the temperature during driving can be expected to be the highest.


For fasteners that do not through-penetrate, this is an important anchoring mechanism. It can be relied upon only if the fastener point is manufactured without cracks and with an appropriate geometry. The thermo pulling process is ideal for achieving an optimized geometry. Control of

Fastener (bainite) Decarbonized zone Base steel (ferrite, perlite) 250 µm

all steps in the production process is necessary to avoid cracks in the point.

Soldering

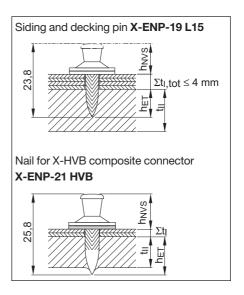
In the zone further from the point, there is a prominent zinc layer separating the fastener from the base steel. This zinc, soldered to the base steel, also makes a contribution to the pull-out resistance of the fastener.

Blunt-tipped fastener X-BT

The X-BT fastener with a shank diameter of 4.5 mm is driven in a pre-drilled 4.0 mm diameter hole. This leads to displacement of the base material. Part of the base steel is punched down into the pre-drilled hole, generating high temperatures and causing friction welding. Due to elasticity of the base steel, additional clamping effects are also superposed. Displaced base material can be clearly seen in the photograph. Base material adhering to the fastener shank indicates a welding effect.

5.2 Factors influencing pull-out resistance

Powder-actuated fastening systems must be designed and manufactured to ensure that pull-out resistance will be adequate for the applications intended. Through understanding of the anchoring mechanisms, experience and testing, factors that influence pull-out strength have been identified. Some of these factors are:


- Depth of penetration in the base material
- Surface characteristics of the fastener
- Coatings on the steel base material
- Driving velocity
- · Diameter of the fastener shank

Knowledge of the influencing factors is vital to the design of fastening systems and is useful for operators in understanding the various application guidelines and restrictions that apply to a fastening system. Some of the influencing factors are discussed in the following section.

Depth of penetration in the base material

The depth of penetration of fasteners in steel is taken as the distance that the point travels below the surface of the base steel, independent of the steel thickness. In other words the depth of penetration h_{ET} can be greater than, equal to or less than the steel thickness.

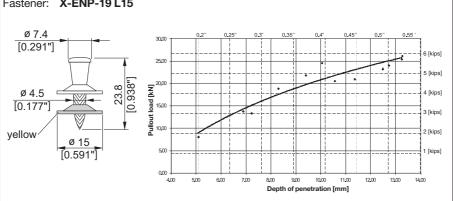
Resistance to pull-out increases with increasing depth of penetration. This is also true for through-penetrating fasteners where h_{ET} is greater than the steel thickness. The design of a powder-actuated fastener has to take into account the depth penetration necessary to achieve the pull-out resistance required for the application. Application guidelines published for any fastener include the required nail head stand off h_{NVS} , which corresponds to the penetration depth.

Guide values for the depth of penetration of specific fastener types are as follows:

Galvanized fastener with knurled shank: $h_{ET} = 12 \text{ to } 18 \text{ mm}$ (shank diameter 4.5 mm)

 $h_{ET} = 10 \text{ to } 14 \text{ mm}$ (shank diameter 3.7 mm) Galvanized fastener with knurled tip: $h_{ET} = 9 \text{ to } 13 \text{ mm}$ (shank diameter 4.5 mm)

Galvanized fastener with smooth shank: $h_{ET} = 15 \text{ to } 25 \text{ mm}$ Stainless steel fastener with smooth shank: het = 9 to 14 mm Blunt-ended fasteners: $h_{ET} = 4 \text{ to } 5 \text{ mm}$

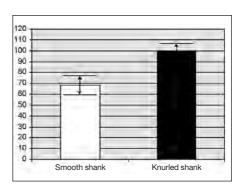

The effect of penetration depth on pull-out strength can be demonstrated in experiments in which the driving energy is varied so as to produce varying penetration. The results of a test of this kind are summarized below. The application recommendations for fasteners are based on tests like these and they clearly show the importance of carrying out the fastening work in accordance with the recommendations of the manufacturer.

Steel: $t_{II} = 20 \text{ mm} (0.787")$

 $f_{U} = 630 \text{ N/mm}^2 (91.000 \text{ psi})$

Tool: DX 76 / DX 76 PTR and DX 860-ENP

Fastener: X-ENP-19 L15


4.33 8/2011

Knurling on the fastener shank

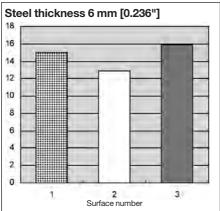
Fasteners for use in steel base material usually have knurling on the shank so as to improve the resistance to pull-out. The effect of the knurling was shown in a test with fasteners that had knurled and unknurled shanks, but were otherwise the same.

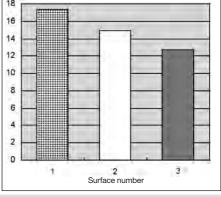
The benefit of knurling is clearly seen from the test results. With virtually the same penetration (actually 106%), the smooth-shank fastener had only 68% of the pull-out strength of the knurled-shank type. Even with the penetration increased to 137%, the pull-out strength was still only 81% of that of the knurled-shank fastener. In this test, the steel thickness of 10 mm (0.394") allowed through penetration of the steel. If the steel is too thick for through penetration, the beneficial effect of knurling becomes even more pronounced.

Zinc coating on the fastener shank

Zinc on a fastener shank appears to act as a lubricant that reduces its resistance to penetration into steel. Reduced pull-out strength results because the lower resistance means less heat is generated, thus reducing the welding effect between the shank and the base steel. This was shown in an experiment with fasteners that were identical except for the thickness of zinc coating.

Steel base material: $t_{II} = 20 \text{ mm} [0.787]$],		
f _u = 440 MPa [63,817 psi]					
Zinc thickness in mm	Average penetration h _{ET} mm / [in.]	n	Average ultimate poly N _{u,m} kN / [kip]	ull-out load	Variation CV %
ca. 10	12.12 [0.477]	100	8.53 / [1.918]	67	25.6
2-5	11.86 [0.470]	98	12.82 / [2.882]	100	9.3


Although driving the fastener through sheet metal, as is the case when fastening siding and decking, reduces the negative effect of zinc coating on pull-out strength, the reason for tightly controlling the galvanization process is clear.


Surface of the steel base material

Corrosion protection of structural steel is often achieved by hot-dip galvanizing. Tests have shown that if the fastener penetrates right through the steel, the galvanizing has no significant effect on pull-out strength. In the case of fasteners that do not through-penetrate, pull-out strength is reduced by about 25%. The summary of results from one test is shown below to illustrate these effects.

Average ultimate pull-out loads

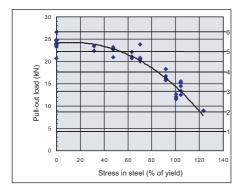
Steel thickness 20 mm [0.787"]

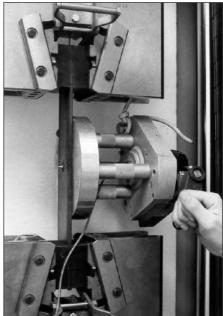
2. Sandblasted 3. Pickled + hot-dip galvanized (min. 60 µm zinc)

Several important observations can be made based on these results:

- Pull-out loads in 6 mm (¹/₄") steel base material are much less affected by the surface condition of the steel than they are in 20 mm (³/₄") steel. The reason is that the main anchoring mechanism of through-penetration fastenings is clamping, which is not affected by the surface condition of the steel.
- Hot-dip galvanizing appears to reduce the pull-out strength of non-through-penetrating fastenings by nearly 30%. Note, however, that even with hot-dip galvanizing, the pull-out strength was still 12.5 kN (2.8 kips).
- The negative effect of hot-dip galvanizing is explained by the tendency of zinc on the fastener to act as a lubricant that reduces heat generation during driving. This in turn reduces the tendency of the fastener point to fuse to the base steel. Zinc from the coating on the base steel apparently becomes attached to the fastener as it enters the base steel.

For applications where tensile strength of the fastening is critical and the steel has a heavy coating, the fastening system can be qualified by carrying out pull-out tests on site. If pull-out strength is not adequate, depth of penetration can be increased to improve the situation.

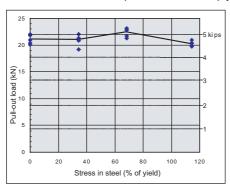



Tensile stress in the steel

The integrity of a powder-actuated fastening is dependent on a relatively smooth pin remaining anchored in structural steel. A large amount of test data, technical assessments, approvals and practical experience with powder actuated fastenings is available to support use of powder-actuated fastening. Performance of fasteners anchored in the steel under tension was investigated by driving fasteners into unstressed steel plates and extracting them with the plates stressed in tension. The steel plates measured $6 \times 80 \times 455$ mm [0.236" \times 3.15" \times 17.9"] and possessed two different yield stresses - 328.6 MPa [47.7 ksi] and 411.7 MPa [59.7 ksi].

By expressing the steel stress in terms of % of actual yield, it was possible to combine the data for both steel grades and obtain a reasonable curve fit.

Of significance to the designer is the expected decrease in pull-out strength of the fastener at a typical maximum allowable design stress of 60 to 70 % of yield. At this stress, the pull-out strength reduction is less than 15 %. The absolute value in the experiment was still greater than 2 tons.



Compressive stress in the steel

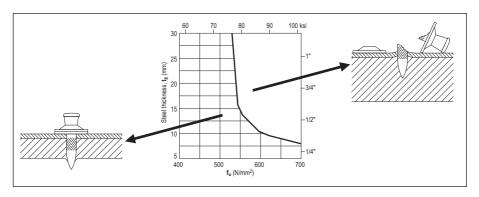
Compressive stress in the base steel has no influence on the pull-out strength of the fastener. This was demonstrated by placing fasteners in unstressed 15 mm [0.59"] thick steel plates having a yield strength of 259.3 MPa [37.6 ksi] and extracting them while the plates were compressed in a testing machine.

The minimal variation in pull-out load is simply random variation experienced in testing.

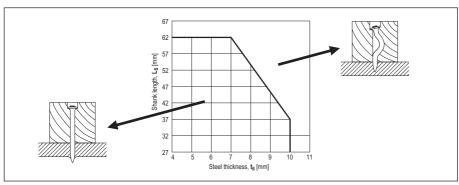
5.3 Suitability of the steel for fastening

There are three main factors determining the suitability of a construction grade steel member for DX fastening:

- Steel thickness
- Ultimate tensile strength
- Flexibility of the base steel member

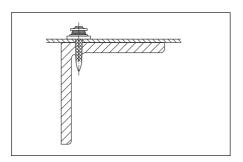


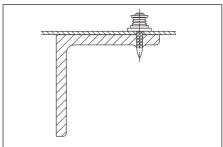
5.4 Application limit diagrams


The application limit of a fastening system is a term applied to a combination of the maximum thickness $\mathbf{t_{II}}$ and ultimate tensile strength $\mathbf{f_{u}}$ of steel in which fastenings can be made. There are two general types of application limit diagrams:

- Short fasteners (e.g. siding and decking nails and threaded studs)
- Long fasteners (e.g. nails used to fasten wood to steel)

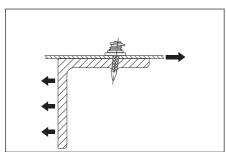
The application limit line for a **short fastener** is a plot of steel thickness versus ultimate tensile strength. In situations represented by steel thickness / ultimate tensile strength combinations above and to the right of the line, some of the fasteners may shear off during driving. The failure surface will be roughly at a 45° angle to the shank length.

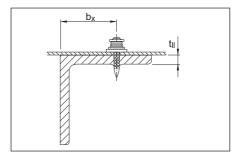

The application limit lines for **long nails** used to fasten **wood to steel** are plots of nail shank length L_s versus steel thickness t_{II} . Each line is valid only for one ultimate tensile strength of steel f_{u} . Attempts at working to the right of the limit line result in buckled nail shanks.



5.5 Thin steel base material

In the context of powder-actuated fastening, steel is considered thin when flange deformation during driving dominates fastener design. When the steel flange is thinner than about 6 mm [0.25"], flange deformation makes use of fasteners with a 4.5 mm [0.177"] shank diameter more difficult and switching to a 3.7 mm [0.145"] shank fastener leads to better results. Use of fasteners with tapered shanks and energy-absorbing washers improves performance and reliability.





A fastener can penetrate into steel only when the steel (flange) develops a resistance greater than the force required for penetration. This implies the use of energy in excess of that required for penetrating into the steel. In fact, if the driving energy remains constant, fasteners placed closest to the web will be driven deepest. All siding and decking fasteners should have a mechanism to clamp the sheets down tightly over the entire range of allowable standoffs. This is especially critical for fasteners used for fastening to thin steel.

Obviously, under shear loading, failure of the base material is more likely with thin steel than with thick steel. When approving fastening systems for a project, it is important to consider whether the system has actually been tested with thin base steel or not.

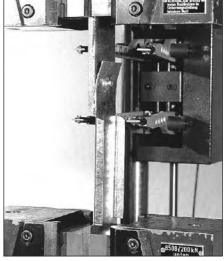
Hilti's general recommendation for thin base steel fasteners is to place the fastenings within $\mathbf{b_x} = 8 \times \mathbf{t_{II}}$ of the web.

5.6 Types of load and modes of failure

5.6.1 Shear loads

The shear loads acting on siding and decking fasteners come from:

- Diaphragm action of the fastened sheets
- Forces of constraint (for example due to temperature changes)
- Self-weight of siding material


Testing

Shear testing of siding and decking fastenings is done using specimens made up of a strip of sheet metal fastened to a steel plate. Suitable, non-slip fixtures have to be used at either end. In some cases specimens are bent up at the sides to hinder eccentricity.

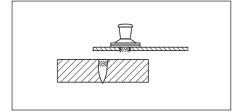
Failure of the fastened material

The load-deformation curves of shear tests with powder-actuated fasteners show a nearly ideal behavior. After an initial elastic phase during which the clamping force of the washers against the sheet metal is overcome, the sheet metal reaches its yield stress in an area where the fastener bears against it. Then the fastener shank cuts through the sheet metal until the end of the sheet is reached. The large area under the load-deformation curve represents energy absorbed, and this is what makes the fastening method ideal for diaphragms.



Failure of the base steel

If the thickness of the fastened sheet metal is large compared to the base steel thickness, bearing failure of the base material is a possible mode of failure.

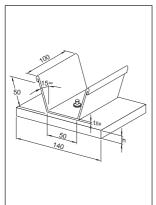

Pull-out from the base steel

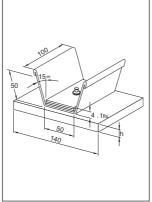
The unavoidable eccentricity in the shear test specimen leads to a tensile load component on the fastener. Thick fastened material and thin base material is also involved in this mode of failure. This failure mode is generally not governing for base material thickness of $t_{II} > 6$ mm.

Fracture of the fastener

About 20 kN (4.5 kips) of force is required to shear the Ø 4.5 mm (0.177") shank of an **X-ENP-19 L15** fastener. With about 2.5 mm (12 gauge) thick steel sheet as fastened material, a force of this magnitude could be possible. The force needed to break a Ø 3.7 mm (0.145") shank of an **X-EDNK22 THQ12** fastener is about 13 kN (2.9 kips). This force can be generated with 1.5 mm (16 gauge) sheet steel. In practice, this failure mode is likely only where expansion joints are not provided to relieve forces of constraint from temperature differences.

5.6.2 Tensile loads


The most common source of tensile loading on siding and decking fasteners comes from wind suction acting on the roof or wall cladding. In diaphragms, fasteners can be subject to tensile loads in situations where the combination of geometry and thickness of decking fastened leads to prying. In designs with very stiff decking and wide beams or unbalanced spans, prying can also be caused by concentrated loads.



Testing

Tensile testing of siding and decking fastenings is carried out using specimens made up of a trapezoidal-shaped piece of sheet metal fastened to a steel plate. Suitable, vice-like fixtures are used to grip the specimen. This is often referred to as a pull-over test because the common failure mode is the sheet pulling over the washers or the head of the fastener. If the sheet thickness fastened is increased so that pull-over does not govern, pull-out will be the failure mode.

Some fasteners like the Hilti X-ENP have a head that can be gripped and pulled out by a suitable fixture. With these fasteners, a pull-out test can still be done even if pull-over is the original mode of failure. This fastener type has the further advantage of allowing in-place fasteners on a jobsite to be tested.

Pull-over test specimen

Pull-over test specimen with 3 extra layers to simulate end lap – side lap

Test setup

Sheet pull-over


In this failure mode, the sheet tears and is lifted up over the fastener head and washers. Depending on the sheet thickness and tensile strength, the washers may be bent up.

Washer pull-over

Another possible failure mode is that of the washers being pulled up over the head of the nail. Obviously, this happens when the sheet is somewhat stronger and /or thicker than when sheet pull-over occurs. This failure mode is also heavily dependent on fastener design.

Pull-over test specimen at test start Sheet pull-over

Washer pull-over

Pull-out from the base steel

As sheet thickness and number of layers is increased, this failure mode becomes more likely. For a properly driven X-ENP-19 L15 pull-out from the base steel is not a likely mode of failure. The head and washer design of the X-EDNK22 THQ12 or X-EDN19 THQ12 fasteners can allow this failure mode, especially with multiple layers of sheets.

Fracture of the fastener

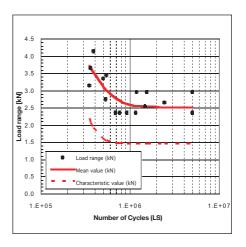
A force of more than 30 kN [6.7 kips] is required to break the Ø 4.5 mm [0.177"] shank of an X-ENP-19 L15 fastener and, even if sheet or washer pull-over does not govern, pull-out strengths of this magnitude are not very common. This mode of failure will therefore hardly ever occur with these heavy-duty fasteners. The Ø 3.7 mm [0.145"] shank of an X-EDNK22 THQ12 or X-EDN19 THQ12 fastener may break at about 20 kN [4.5 kips] tension. Since these smaller fasteners will pull out at a force of 8 to 15 kN [1.8-3.3 kips], fractures due to tensile loads are rare. If fractured fasteners of this type are found on a jobsite, the most likely cause is that the application limit has been exceeded (the base steel is too hard and/or too thick for the pin).

Cyclic loading

Siding and decking nails used in wall and roof construction are subject to cyclic loading from wind suction. Cyclic load testing is carried out to determine characteristic resistance and allowable (recommended) loads. The approval requirements of the European Technical Approval ETA prepared by DIBt (Deutsches Institut für Bautechnik) govern the design-relevant number of load repetitions (5,000) and the necessary safety factors. Notes in this regard are found on the corresponding product data sheets.

If the fastener will be subjected to a large number of load repetitions and fatigue, we recommend carrying out a design check according to the requirements of Eurocode 3 (or similar

4.43 8/2011

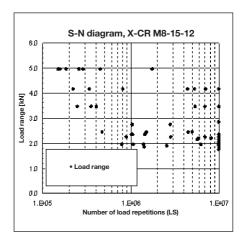


code). Eurocode 3 gives the characteristic fatigue resistance and safety concept for steel construction. To carry out the check according to Eurocode 3 it is necessary to have a statistical analysis of test data obtained under the application conditions. Except for siding and decking fasteners, the applicable product data sheets limit the validity of recommended loads to predominantly static loading. If a design analysis has to be carried out for true fatigue loading, test data can be obtained from Hilti. Examples of such data are shown below.

X-EM8-15-14 (standard zinc-plated fastener)

The X-EM8-15-14 has a shank diameter of 4.5 mm and a hardness of HRC 55.5 (f_u = 2,000 MPa). The Δ F-N diagram shows the load range Δ F for a lower load of 0.05 kN. The individual test results are displayed as points and the curves show average and characteristic (95% survival probability) values. The failure mode was shank fracture or fracture in the M8 threading.

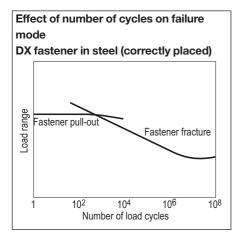
The recommended load for predominantly static loading is 2.4 kN. Comparing this value to the $\Delta F\text{-N}$ diagram will lead to the conclusion that X-EM8-15-14 fastenings designed for 2.4 kN static loading will survive a large number of load repetitions. The fastenings can be said to be robust, even when the actual loading turns out to be in part cyclic.

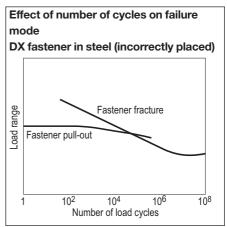


X-CRM8-15-12 (stainless steel fastener)

The X-CRM8-15-12 has a shank diameter of 4.0 mm and a minimum ultimate tensile strength of 1,850 MPa. The Δ F-N diagram shows the load range Δ F for a lower load of 0.05 kN. The individual test results are displayed as points. The failure mode was shank fracture or fracture just below the head of the stud.

The recommended load for predominantly static loading is 1.8 kN. Comparing this value to the ΔF -N diagram will lead to the conclusion that X-CRM8-15-12 fastenings designed for 1.8 kN static loading will survive a large number of load repetitions. The fastenings can be said to be robust, even when the actual loading turns out to be in part cyclic.




Mode of failure under cyclic loading

A major finding of cyclic loading tests is that the strength of a DX fastening subject to cyclic loading is not limited by failure of the anchorage. It is only when the number of cycles is very low – i.e. predominantly static loading – that nail pull-out is observed. The two schematic diagrams below show the relationship between failure mode and number of cycles. All tests show that the anchorage of DX fasteners in steel and in concrete is extremely robust with regard to resisting cyclic loading. Fasteners subject to a large number of load repetitions fracture in the shank, head or threading. A condition for obtaining this behaviour is that the fasteners

are correctly driven. Fasteners that are not driven deeply enough exhibit low pull-out strength and in a cyclic loading test may not necessarily fail by fracture.

In older product information and data sheets, this basic suitability of DX fasteners for cyclic loading was emphasized by defining the recommended loads as cyclic recommended loads. At the time that this product information was assembled, a true safety concept for a strict check of DX fastenings subject to fatigue loading was not available. With Eurocode 3, this is today available. If a fatigue design analysis is carried out, it is important – as with static design – that adequate redundancy be provided.

Failure of the sheet In cyclic load tests, failure of the steel sheet itself is common.

5.7 Effect of fasteners on structural steel

Driving powder- or gas-actuated fasteners into a steel member does not remove steel from the cross-section, but rather displaces steel within the cross-section. It is therefore not surprising that tests like those described in following sections show that both drilled holes and screws, either self-drilling or self-tapping, reduce the strength of a cross-section more than powder-actuated fasteners.

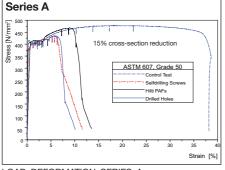
The results of the tests can also be used to show that it is conservative to consider a powder-actuated fastener as a hole. This allows the effect of fasteners in a steel member subject to static loading to be taken into consideration.

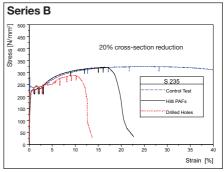
Fatigue seldom needs to be considered in building design because the load changes are usually minor in frequency and magnitude. Full design wind and earthquake loading is so infrequent that consideration of fatigue is not required. However, fatigue may have to be considered in the design of crane runways, machinery supports, etc. The S-N curves resulting from fatigue tests of steel specimens with fasteners installed are also presented.

5.7.1 Effect on the stress-strain behaviour of structural steel

The effect that powder-actuated fasteners (PAF's) have on the stress-strain behaviour of structural steel was investigated in a systematic test programme using tensile test specimens containing PAF's, self-drilling screws and drilled holes. A control test was carried out using specimens without any holes or fasteners.

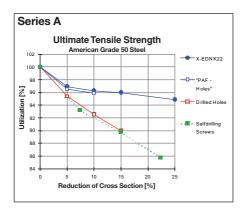
Series A:

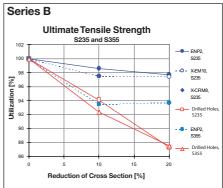

- ASTM 607, grade 50
- Cross-section 3.42 x 74 mm [0.135 x 2.913"]
- X-EDNK22 powder-actuated fasteners, shank diameter 3.7 mm [0.145"]
- Drilled holes, diameter 3.7 mm [0.145"]
- Self-drilling screws, shank diameter
 5.5 mm [0.216"]


Series B:

- S235 and S355 steel
- Cross-section 6 x 45 mm [0.236 x 1.772"]
- Powder-actuated fasteners, shank diameter 4.5 mm [0.177"]
- Drilled holes, diameter 4.5 mm [0.177"]

The figures below show representative stress-strain curves for the tests (the plotted stress is based on the gross cross-section). Note that the line for the powder-actuated fasteners follows the control test line more closely than the lines for drilled holes or self-drilling screws.





LOAD_DEFORMATION_SERIES_A

LOAD_DEFORMATION_SERIES_B

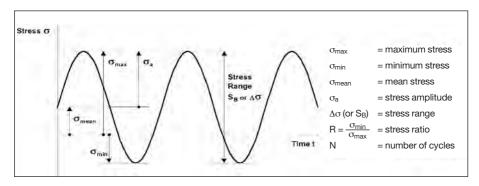
The test results were evaluated in terms of utilization as a measure of ultimate strength. Utilization is the ultimate load of a sample expressed as a percent of the ultimate load of the control test.

Graphs of the utilization versus cross-section reductions show that:

- The utilization for PAFs is clearly better than that of drilled holes or self-drilling screws.
- The hole left by a removed PAF has the same effect as when the PAF is left in place.
- Increasing the number of PAFs across a section from one to two or more has a proportionally smaller effect on utilization than placement of the first fastener.

More detailed information on the test program and findings is published in the paper **Pow-der-actuated fasteners in steel construction** (and the referenced literature), published in the STAHLBAU-Kalender 2005 (Publisher Ernst & Sohn, 2005, ISBN 3-433-01721-2). English Reprints of the paper can be distributed per request.

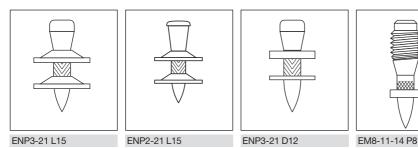
5.7.2 Effect on the fatigue strength of structural steel

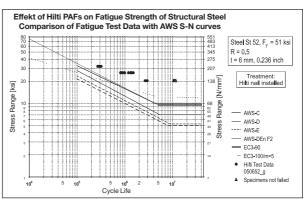

During the late 1970s and early 1980s, a fatigue testing program consisting of 58 tests with over 1,100 specimens was carried out at the University of Darmstadt in Germany. The reason for the research at that time was to support the use of powder-actuated fasteners for attaching noise-dampening cladding to railway bridges in Germany.

Parameters investigated in those tests are shown in following table:

Steel grade	Steel thicknesses	Stress ratio R	Imperfections
S 235 (St 37) /	6, 10, 15, 20,	0.8, 0.5, 0.14,	Fastener:
A36	26.5, 40, 50 mm	-1.0, -3.0	- installed and pulled out,
S 355 (St 52) /	[0.236, 0.394, 0.591,		- inclined installation and pulled out
grade 50	1.043, 1.575, 1.969"]		- inclined installation

Loading conditions


The terminology and notation is shown in the illustration below.



Fasteners tested

The primary fastener used in the tests was the Hilti ENP3-21 L15, the forerunner of the ENP2-21 L15. The difference is in the head shape, which has no effect on interaction with the base steel. Tests were also performed with the ENP2-21 L15, ENP3-21 D12 and the EM8-11-14 threaded stud, all of which have 4.5 mm diameter knurled shanks.

The results of the tests were evaluated by Niessner and Prof. T. Seeger from the University of Darmstadt in accordance with the provisions of Eurocode 3. An example plot of one test series is given at the right. The graph allows for a comparison with European fatigue categories 90 (m = 3) and 100 (m = 5) as well as American categories according to AWS-provisions.

Conclusions

- The effect of driving a Hilti powder-actuated fastener on the fatigue strength is well known and predictable.
- The constructional detail "Effect of powder-actuated fasteners on base material" (unalloyed carbon steel) was evaluated by Niessner and Seeger from the University of Darmstadt in compliance with Eurocode 3.
- The EC 3 detail category 90 with m = 3 or the detail category 100 with m = 5 is alternatively applicable.
- Wrong fastener installations as popped out or inclined fasteners are covered. Piston marks in the base material due to wrong use of the tool without a fastener or notches due to fasteners failed during the installation have to be removed by appropriate measures.

More detailed information on the evaluation of the test data and the test program is published in the paper "Fatigue strength of structural steel with powder-actuated fasteners according to Eurocode 3" by Niessner M. and Seeger T. (Stahlbau 68, 1999, issue 11, pp. 941-948).

English reprints of this paper can be distributed per request.

6. Concrete base material

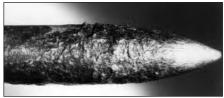
6.1 Anchoring mechanisms

The following three mechanisms cause a DX-/GX-fastener to hold in concrete:

- Bonding / sintering
- Keying
- Clamping

These mechanisms have been identified and studied by analyzing pull-out test data and by microscopic examination of pulled-out fasteners and the concrete to fastener interface.

Bonding / sintering

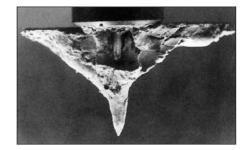

When driving a fastener into concrete, the concrete is compacted. The intense heat generated during driving causes concrete to be **sintered** onto the fastener. The strength of this sintered bond is actually greater than that of the **clamping** effect due to reactive forces of the concrete on the fastener. The existence of the sintered bond is demonstrated by examining pulled-out fasteners. The fastener surface, especially in the region of the point, is rough due to sintered-on concrete, which can only be removed by using a grinding tool. When performing pull-out tests, the most common failure mode is breakage of the sintered bond between the concrete and the fastener, especially at and near the point.

Keying

The sintered material forms ridges on the fastener surface. These ridges result in a micro-interlocking of the fastener and the concrete.

This anchoring mechanism is studied by examining pulled-out fasteners under a microscope. As in the case of sintering, keying is primarily active in the region of the fastener point.

Mechanically cleaned point of a pulled-out DX fastener

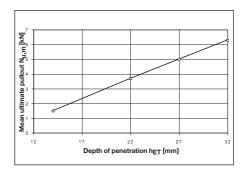

Clamping

The compressibility of concrete limits the buildup of compressive stress around the driven fastener. This in turn limits the effectiveness of clamping as an anchoring mechanism.

The tendency of stressed concrete to relax further reduces the compressive stress and hence the clamping effect. For these reasons, clamping of the fastener shank contributes only insignificantly to the total pull-out strength.

Concrete failure

Concrete cone failure is occasionally observed when using a testing device with widely spaced supports. The fact that the concrete failed indicates that the fastener bond to the concrete was stronger than the concrete.

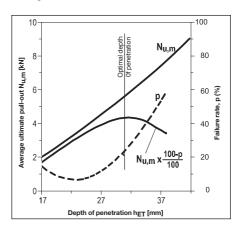

6.2 Factors influencing resistance to pull-out

Factors that can affect the pull-out strength of fastenings to concrete include:

- Depth of penetration into the concrete
- Concrete parameter (compressive strength, grain structure, direction of concrete placement)
- Distance to concrete edge and fastener spacing

Depth of penetration her

Fasteners that are driven deeper typically have a higher resistance to pull-out. This relation is best shown by placing groups of fasteners with different driving energy and comparing the results for each group with the others. The result of such a test is shown in the graph at the right. Note that fastener driving failures were not considered in calculation of the average ultimate load, N_{u,m}.



The value of increasing the depth of penetration in order to increase pull-out strength is limited by the increasing fastener driving failure rate. Provided that the penetration depth is the same, fastenings in concrete with a higher compressive strength hold better than fastenings in lower strength con-

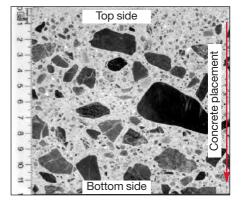
Pull-out strength and fastener driving failure rate both increase with increasing penetration depth. The optimum depth of penetration is taken as the depth at which the yield in terms of pull-out strength begins to decrease. This is within a range of 18–32 mm depending on the grade and age of the concrete as well as the strength of the fastener.

$$yield = N_{u,m} \cdot \left(\frac{100 - p}{100}\right)$$

crete. The ability to exploit this characteristic is also limited by increased fastener driving failure rate with higher strength concrete. As could be expected, the depth of penetration at which the failure rate is at a minimum decreases with increasing concrete strength.

Concrete parameters

The concrete parameters (such as the type and size of concrete aggregates, type of cement and the location on top or bottom surface of a concrete floor) do affect the fastener driving failure rate, sometimes significantly.

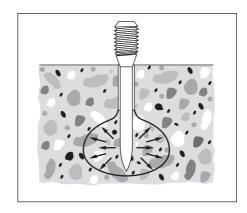

Fastener driving failures are caused by the fastener hitting a hard aggregate, such as granite, located close to the concrete surface. A hard aggregate can deflect the fastener and in a severe case, the fastener may bend excessively, leading to con-

crete fracture in a cone shape and no hold being obtained by the fastener.

In case of slight fastener bending, concrete spalling may occur at the surface. However, because pull-out strength is obtained mostly in the area of the fastener point, concrete spalling does not affect the permissible load of the DX-/GX-fastening.

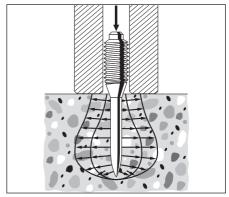
Softer aggregates such as limestone, sandstone or marble may be completely penetrated when hit by the fastener.

Overhead fastening is usually associated with a higher rate of fastener driving failure than floor fastening. This is due to the distribution of the aggregates within the concrete. Large aggregates tend to accumulate at the bottom of a floor slab. At the top, there is a greater concentration of small aggregates and fines.



There are several possible ways of reducing the failure rate when powder-actuated fasteners are used for fastening to concrete. There are two basic ideas: one is to

reduce concrete tensile stresses near the surface and the other is to delay the effect of these stresses.

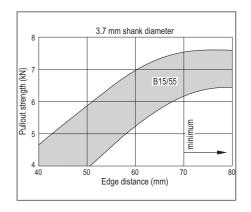

Pre-drilling the concrete (DX-Kwik)

By pre-drilling a very small hole (5mm diameter, 18 or 23 mm deep), the stresses are relocated to greater depth in the concrete. Fasteners placed with DX-Kwik are surrounded by a stress "bulb" located deep in the concrete. With this method, virtually no fastener driving failures occur.

Spall stop fastener guide

A spall stop is a heavy steel fastener guide. Its weight and inertia counteract the stresses at the surface for a very short time. This allows redistribution of the stresses to other parts of the concrete.

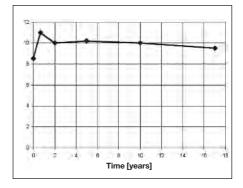
Changing from a long to a short fastener reduces the magnitude of the stresses and thus the rate of fastener driving failure.



Edge distance and fastener spacing

If fasteners are placed too close to the concrete edge, pull-out load capacity will be reduced. Minimum edge distances are therefore published with a view to reducing the effect edges have on pull-out strength. The corresponding data has been obtained from tests and analysis and is given in part 2 of this manual.

Additional provision is made for fastener spacing when positioned in pairs or where fasteners are placed in rows along a concrete edge.


These edge distances and spacing also have the purpose of helping to prevent concrete spalling and/or cracking due to fastening. However, spalling has generally only an insignificant influence on pull-out strength.

6.3 Effect of time on pull-out resistance

The effect of age on pull-out strength has been investigated in comprehensive tests. The main concern is, in fact, the effect of concrete relaxation in the area around the driven fastener.

This graph provides an overview of tests performed with DX-Kwik fasteners. Since standard DX fastenings have the same anchoring mechanism, this statement is also valid for standard DX fastenings. The test results indicate very strongly that relaxation of the concrete has no detrimental effect on the pull-out resistance of DX fastenings. The test data also shows that sintering and keying are the dominant anchorage mechanisms because they do not rely on friction between the fastener and the concrete.

6.4 Effect on concrete components

Fastenings in the compression zone of the structure have no effect on concrete compressive resistance as long as detailed provisions on edge distance and spacing are complied with.

Fastenings in the **tensile zone** are subject to the following provisions:

- a. Installations on plain load-bearing components such as concrete walls or ceilings are generally possible without restrictions as the load-bearing behaviour of these components is only negligibly affected by the fasteners. The predominant condition is static loading. This statement is based on experimental investigations carried out at the Technical University of Braunschweig, Germany.
- b. Fastenings in reinforced concrete beams: it has to be ensured that the main rein-
- forcement steel will not be hit or penetrated by the DX fasteners. This measure of precaution is mainly founded on the reduction of the ultimate strain of the steel reinforcement. Exceptions are possible when the structural engineer responsible for design is consulted.
- c. Fastenings in pre-stressed concrete members:

it has to be ensured that the pre-stressing steel reinforcement or cables will not be hit or penetrated by the DX fasteners.

If the concrete is too thin, concrete will spall off on the rear surface. The minimum thickness of concrete depends on the shank diameter of the fastener used.

Fastener shank	Minimum concrete	
diameter	thickness	
dnom (mm)	hmin (mm)	
3.0	60	
3.5 / 3.7	80	
4.5	100	
5.2	100	

7. Masonry base material

7.1 General suitability

Direct fastening technology can also be used on masonry. The joints between bricks or blocks and the covering plaster layer on virtually all types of masonry (exception for lightweight aerated concrete blocks) provide an excellent substrate for light-duty and secondary fastenings.

Suitability table: DX fastening on masonry

Masonry material	Unplastered mason	Plastered masonry	
•	Fastenings	Fastenings	Fastening
	in mortar joints*	in masonry	in plaster
	(joint width ≥ 10 mm)	blocks or bricks	(thickness ≥ 20 mm)
Clay brick			
solid	++	+	++
vertical perforated	++	_	++
horizontally perforated	++	_	++
Clay clinker			
solid	++	+	++
vertical perforated	++	_	++
Sand-lime block			
solid	++	++	++
perforated	++	++	++
hollow	++	++	++
Aerated concrete	_	_	_
Lightweight concrete			
solid	++	_	++
hollow	++	-	++
Hollow concrete	++	+	++
Slag aggregate			
solid	++	-	-
perforated	++	-	++
hollow	++	_	++
++ suitable	+ limited suitability	- not fully investigated	— not suitable

^{*)} Joints must be completely filled with mortar

The above table is based on laboratory and field experience. Because of the wide variety of types and forms of masonry in use worldwide, users are advised to carry out tests on site or on masonry of the type and form on which the fastenings are to be made.

8. Temperature effects on the fastening

8.1 Effect of low temperatures on fasteners

Steel tends to become more brittle with decreasing temperature. Increased development of natural resources in Arctic regions has led to the introduction of steels that are less susceptible to brittle failure at subzero temperatures. Most siding and decking fasteners are used to fasten the liner sheets of an insulated structure and are not exposed to extremely low tempera-

tures during service. Examples of situations where the fastenings are exposed to extremely low temperatures during their service life are:

- Fastenings securing cladding in singleskin construction
- Construction sites left unfinished over a winter
- Liner sheets in a cold-storage warehouse

Low temperature embrittlement

The susceptibility of fasteners to become brittle at low temperatures can be shown by conducting impact bending tests over a chosen temperature range. The ability of Hilti drive pins to remain ductile over a temperature range from +20°C to -60°C is shown clearly by the fact that the impact energy required remains nearly constant throughout this temperature range.

Impact bending test - DSH57 (4.5 mm diameter, HRC 58 \pm 1)

Temp	erature		Impact energy (foot-pounds)			Impact energy (Joules)		
°F	°C	minimum	maximum	mean	minimum	maximum	mean	
68	20	35.1	>36.1	>36.1	47.6	>48.9	>48.9	
32	0	35.8	>36.1	36.0	48.5	>48.9	48.8	
- 4	– 20	31.4	>36.1	34.3	42.6	>48.9	46.5	
-40	-40	34.4	36.5	35.7	46.6	49.4	48.4	
- 76	-60	35.6	36.2	35.9	48.2	49.0	48.7	

Impact bending test - X-CR (4.0 mm diameter)

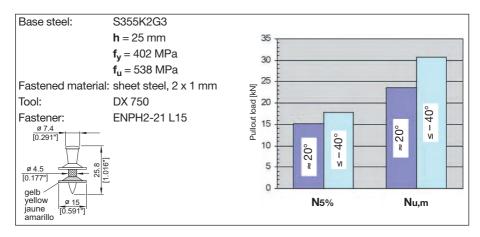
Tempe °F	erature °C	Impact ene	ergy (foot-po maximum	ounds) mean	Impact ene minimum	ergy (Joules) maximum) mean
68	20	14.8	17.0	15.9	20	23	21.6
32	0	17.7	15.5	18.3	24	21	24.8
- 4	– 20	14.8	15.9	15.5	20	21.6	21.0
- 40	-40	16.2	17.9	16.8	21.9	24.2	22.8
- 76	-60	14.2	15.6	15.1	19.2	21.1	20.5

Impact bending test - X-CR (3.7 mm diameter)

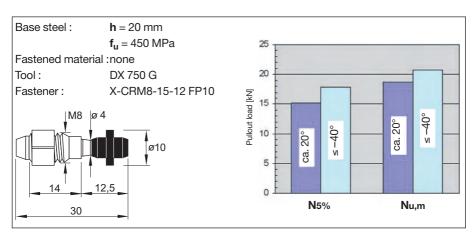
Tempe	rature	Impact energy (foot-pounds)			Impact energy (Joules)		
°F	°C	minimum	maximum	mean	minimum	maximum	mean
68	20	11.5	14.8	13.2	15.6	20.0	17.9
32	0	12.9	16.3	15.1	17.5	22.1	20.4
- 4	– 20	13.1	15.8	14.7	17.8	21.4	19.9
-40	-40	14.2	15.8	14.8	19.2	21.4	20.1
-76	-60	12.3	15.0	13.7	16.7	20.3	18.6

Tests conducted according to DIN EN 10045 parts 1-4

Distance between supports = 22 mm


The symbol ">" indicates no breakage of the specimens. In the other cases, about 50% of the specimens suffered breakage.

8.2 Effect of low temperatures on fastenings to steel

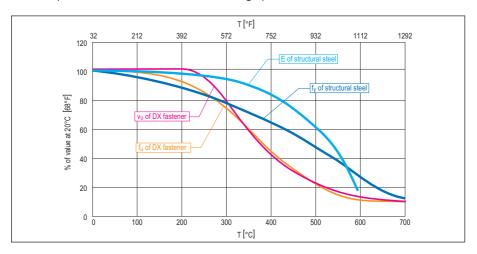

Effect of low temperatures on pull-out strength

Tests show that very low temperatures tend to increase pull-out strength with both standard zinc-plated fasteners and with the stainless steel. The results of two tests are summarized below. The fasteners were driven at

room temperature and tested at -40°C to -70°C. A control sample was tested at 20°C. Explanations for the greater strength at low temperatures include increase in the strength of the zinc that is displaced into the knurling as well as increased strength of the fusing at the point of the fastener.

Two facts stand out from this testing:

- Pull-out strength increased as temperature decreased
- Pull-out from the base steel was the only mode of failure observed. There were no fractures!



8.3 Fire rating of fastenings to steel

Standard zinc-plated, thermally hardened steel fasteners

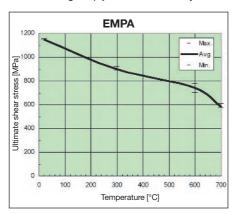
When subjected to high temperatures as in a fire, both powder-actuated fasteners and

structural steel lose strength. Data for standard zinc-plated, thermally hardened fasteners and structural steel are plotted in the graph below.

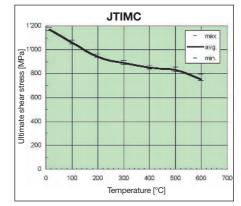
Up to about 300°C [572°F], the strength loss for DX fasteners is roughly proportional to the yield strength loss of structural steel. At 600°C [1112°F], DX fasteners have about 12% of their 20°C [68°F] strength left and structural steel about 26%. Since DX fasteners obtain their high strength through a thermal hardening process, the loss in strength at elevated temperatures is proportionally greater than for structural steel.

The relevance of different strength losses has to be evaluated in the context of the proportion of the material strengths that are actually exploited in a design. In a design calculation, it is conceivable that some steel will actually reach yield stress.

The material strengths of an X-ENP-19 L15


fastener is 30 kN [6.74 kips] in tension and 18.6 kN [4.18 kips] in shear respectively. The recommended working load in tension and shear for an X-ENP-19 L15 16 gauge (1.5 mm) fastening is 4.7 kN [1.057 kips] in tension and 4.6 kN [1.034 kips] in shear, respectively. Thus, the exploitation of the X-ENP-19 L15 strength at about 600°C is only 16 to 25% compared to about 74% for structural steel.

In a fire, powder-actuated fastenings will not be the governing factor. If the fire protection requirements permit the use of structural steel, then powder-actuated fastening can also be used without negative impact on fire protection.


CR500 stainless steel fasteners

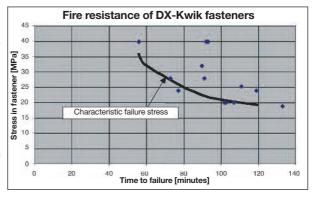
Hilti X-CR/X-CRM fasteners are much more resistant to loss of strength at high temperatures than standard fasteners. The effect of temperature on ultimate shear stress of X-CR/X-CRM/X-BT fasteners was determined in single lap joint shear tests by the

In Japan, similar tests were carried out by JTICM (Japan). These tests were done by driving a 4.5 mm diameter X-CR nail through a 6 mm steel plate into a second 6 mm thick steel plate and shearing the two plates. From the graph it is apparent that the results are nearly the same.

Swiss Federal Laboratory for Materials Testing and Research (EMPA). The results are plotted in the diagram below. This test was done by shearing 4.5 mm diameter fasteners that were inserted in steel plates with 4.6 mm diameter drilled holes.

At 600°C, the CR500 material has 64% of its 20°C shear strength left. By comparison, standard fasteners have only 12% and structural steel only about 26%. The excellent fire resistance of the CR500 material alone justifies its use for some applications.

8.4 Fire rating of fastenings to concrete


Concrete is weakened and damaged by fire but not as quickly as steel. In ISO-standard fire tests conducted with DX-Kwik fastenings at the Braunschweig Technical University in Germany the only failure mode was fracture of the nails.

The actual test data are shown in the table below:

X-DKH 48 P8S15 DX-Kwik fastener, 4.0 shank					
Tested	Tensile load,	Fire resistance/	Failure mode		
in crack width	F	time to failure			
ΔW (mm)	(N)	(minutes)			
0.2	250	103	Nail fracture		
0.2	250	107	Nail fracture		
0.2	350	73	Nail fracture		
0.2	350	91	Nail fracture		
0.2	500	56	Washer pullover		
0.2	500	92	Nail fracture		
0.2	500	93	Nail fracture		

The stress in the fasteners at failure was calculated and plotted so that a plot of stress versus time resulted.

The characteristic failure stress curve from the previous graph can be used to calculate the failure load for various shank diameters with exposure to fire of different lengths of time. The calculated failure loads for 3.7, 4.0 and 4.5 mm shank diameter fasteners after 60, 90 and 120 minutes exposure to fire are shown in the table below.

Failure loads for various shank diameters and fire exposure times

Shank	Fire exposure time and failure stress			
diameter	60 minutes	90 minutes	120 minutes	
(mm)	32.1 MPa	22.3 MPa	19.1 MPa	
3.7	340 N	240 N	200 N	
4.0	400 N	280 N	240 N	
4.5	510 N	350 N	300 N	

This table can be used to determine recommended loads for the ISO fire resistance required.

9. Design concepts

The recommended working loads N_{rec} and V_{rec} are suitable for use in typical working load designs. If a partial factor of safety design method is to be used, the N_{rec} and V_{rec} values are conservative when used as N_{Rd} and V_{Rd}. Alternatively, the design resistance may be calculated from the recommended loads by multiplying by the factor 1.4, which considers the uncertainties from the load on the fasteners. Exact values

for **N**_{Rd} and **V**_{Rd} can be determined by using the safety factors where given and or reviewing test data. Based on cyclic tests it can be stated that DX fastenings can be said to be robust, even when the actual loading turns out to be in part cyclic. Design loads (characteristic strength, design resistance and working loads) for the **X-HVB** shear connector are listed and specified per design quideline.

The designer may encounter two main fastening design concepts:

Working load concept

$$N_S \le N_{rec} = \frac{N_{Rk}}{\gamma_{GLOB}}$$

where γ_{GLOB} is an overall factor of safety including allowance for:

- · errors in estimation of load
- deviations in material and workmanship

and N_S is in general a characteristic acting load.

$$N_S \cong N_{Sk}$$

Partial factors of safety

$$N_{Sk} \times \gamma_F = N_{Sd} \le \frac{N_{Rk}}{\gamma_M} = N_{Rd}$$

where:

 γ_F is a partial factor of safety to allow for errors in estimation on the acting load and γ_M is a partial factor of safety to allow for deviations in material and workmanship.

The characteristic strength is defined as 5 % fractile:

$$N_{Rk} = N_{u.m} - k \times S$$

The k factor is a function of the sample size and the accuracy required. The characteristic strength of fastenings to concrete is determined based on a 90% probability while fastenings to steel are based on a 75% probability.

Structural analysis of the fastened part (e.g. roof deck panel or pipe hung from a number of fastenings) leads to calculation of the load acting on a single fastening, which is then compared to the recommended load (or

design value of the resistance) for the fastener. In spite of this single-point design concept, it is necessary to ensure adequate redundancy so that failure of a single fastening will not lead to collapse of the entire system. The old saying "one bolt is no bolt" can also be applied to DX fastening.

For standard DX fastenings on concrete, a **probability-based design** concept based on multiple fastening is applied in order to allow for fastener driving failures and the large scatter in holding power observed. This concept applies to tensile as well as shear loading and is described in following chapter.

10. Determination of technical data for fastening design

The determination of technical data is based on the following tests:

- Application limits
- Tensile tests to determine pull-out and pull-over strength
- Shear tests to determine bearing capacity of the attached material and the base material.

These tests are described in more detail in the sections "Steel and other metal base material" and "Concrete base material".

10.1 Fastenings to steel

Failure loads in tension and in shear are normally distributed and the variation coefficient is <20%. The test data for each test condition are evaluated for the average and characteristic values. The characteristic value is based on the 5% fractile for a 75% probability.

The application range of the fastener is determined by application limit test where fasteners are set on steel plates of thickness ranging from the minimum recommended thickness $t_{II,min}$ to full steel (\geq 20 mm) and varied plate strength.

The application limit is reached when 1 shear off failure with 30 fasteners tested occurs, or if a detrimental effect on the load values (resistance) occurs, or if a detrimental effect on the load values (resistance) occurs.

Due to the small scatter in failure loads fastenings in steel can thus be designed as single points, although good engineering practice should be kept in mind. System redundancy must be always ensured.

10.2 Profile sheet fastenings

In addition to general fastenings to steel, specific data applies to profile sheet fastenings:

Cyclic loading

Profile sheet fastenings are subjected to repeated loading to simulate wind effects. Cyclic pull-through tests are additional optional tests where the failure load at 5,000 cycles is determined.

The design value of the pull-through resistance for repeated wind loads is the design value of the static pull-through resistance multiplied by a reduction factor of α_{cvcl} .

• If cyclic tests are carried out:

 $\alpha_{cycl.}$ = 1.5 (N_{Rk,cycl.}/ N_{Rk,sta}) \leq 1 (The factor 1.5 takes the different safety levels for fatigue and predominately static design into account)

• If no cyclic tests are carried out:

$$\alpha_{\text{cycl.}} = 0.5$$

Sheet bearing capacity

Profile sheet fastenings may be subjected to shear stresses from building movements or thermal dilatation of the sheets. Tests are undertaken to prove the suitability of the fastenings to support the deformations imposed.

For this, shear tests are carried out using a substrate of the minimum and maximum thickness and 2 layers of profile sheet of the thickness specified.

The fastening is considered suitable if an elongation of 2 mm is achieved without the sheet coming loose or showing an excessive reduction in pull-out load capacity. In this case, no consideration of forces of constraint is required since sufficient ductility is provided by the fastening due to hole elongation.

Standardization

The pull-over strength of profiled sheet fastenings is given with reference to core sheet thickness. Ultimate load data is standardized to the minimum sheet thickness and strength as specified by the relevant sheet standard. The correction applied is as follows:

$$F_{u'} = F_u \times \frac{t_{min}}{t_{act}} \times \frac{f_{u,min}}{f_{u,act}}$$

10.3 Fastenings to concrete (standard DX / GX)

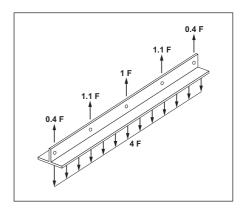
The failure loads in tension and shear show a large scatter with a variation coefficient of up to 60%. For specific applications, fastener driving failures may be detected and the fasteners replaced (e.g. threaded studs). For others, however, detection may not be possible (e.g. when fastening wooden battens) and this must be taken into consideration.

The design resistance is therefore determined for:

- failure loads without considering fastener driving failures
- failure loads considering a 20% rate of fastener driving failure

Evaluation of technical data and design according to the single point design approach based on fractiles and a safety factor is not feasible for such systems. The characteristic value would become zero at a variation coefficient of about 50%.

The evaluation of the data and the determination of the design resistance is therefore based on a multiple fastening, i.e. a redundant design, in which the failure probability not of a single, but of a number of fasteners supporting a structure is calculated. By this system, load may be transferred between the fasteners, if slip or failure of one of the fasteners occurs.


Test data

The test data for the fastener is consolidated to form a master pullout load distribution.

Static system

Two static systems are examined

- A suspended beam allowing unrestrained flexure of the beam
- A beam directly attached to the surface, which shows restrained flexure

Calculation method

The calculation method used is the Monte Carlo method, by which holding powers taken stochastically from the master distribution are attributed to the individual fasteners of the system and the system is checked to determine whether the imposed line load can be supported. By performing a large number of such simulations, statistical information on the failure probability of a system under a given line load is obtained.

Design parameters

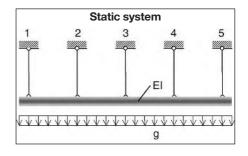
The design is based on the following parameters:

• Failure probability: 1 × 10⁻⁶

Number of fasteners: 5Line load uniformly distributed

• Failure criterion: 2 edge or 3 central fastenings

The result is expressed in recommended load per fastening.


Effect on a fastening design

The overall condition for a fastening design in practice is that redundancy of the complete system has to be ensured. The effect of the Monte Carlo approach on a design is illustrated with two examples below.

Example:

Fastening of a plumbing with five ceiling hangers.

- Due to the stiffness (EI) of the plumbing a redistribution of the dead load (g) to the remaining hangers is given in case of two neighbouring hangers failing.
 - Fixing of each hanger with one nail is sufficient.
- 2. The plumbing is not stiff enough to redistribute the dead load to the neighbouring hangers in case of one fastener failing.
 - Each hanger has to be fastened with five nails.

10.4 DX fastenings to concrete (DX-Kwik)

Failure loads in tension and shear are log-normally distributed and the variation coefficient is <20%. The test data is evaluated to yield the 5% fractile based on a 90% probability. The recommended working loads are obtained by applying a global safety factor of 3 for tension and shear.

The determination of technical data for cracked concrete (tensile zone) is based on tensile tests. Shear tests in cracked and uncracked concrete give similar results and are therefore not performed.

Failure loads in cracked concrete show a higher variation coefficient. Test data is also evaluated to yield the 5% fractile. The recommended load for the tensile zone is taken as the smaller of the following values:

• $N_{rec} = N_{Rk}/\gamma_{GLOB}$ $\gamma_{GLOB} = 3.0$ for 0.2 mm crack width

• $N_{rec} = N_{Rk}/\gamma_{GLOB}$ $\gamma_{GLOB} = 1.5$ for 0.4 mm crack width.

The application range of the fastener is determined by application limit test where fastenings are made on concrete of varying strength and age according to the application conditions specified (pre-drilling and setting). The attachment height is kept at the lower end of the range specified. The application limit is reached, if the failure rate exceeds 3% or the pull-out values strongly deviate from a lognormal distribution. The sample size is 30 per condition.

10.5 Fastener design in the USA and Canada

Testing of powder-actuated fasteners is carried out according to the ICC-ES AC 70 acceptance criteria and ASTM E 1190 standard test method. The test procedure covers tensile and shear testing in steel, concrete and masonry.

The determination of the allowable (recommended) load is shown below. The recommended working load is derived from the test data by taking the average failure load or the calculated characteristic load divided by a global safety factor.

Three different options have to be distinguished:

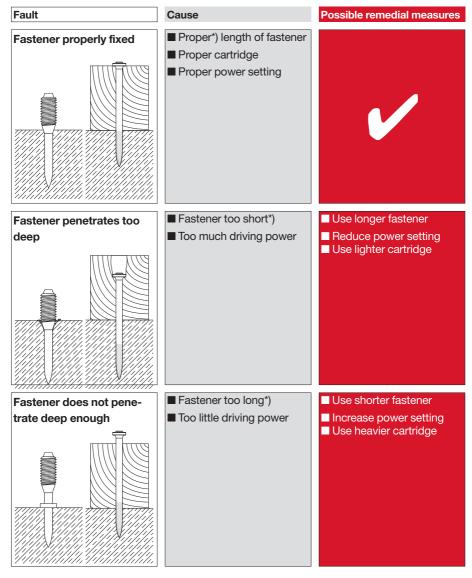
COV ≥ 15%	COV < 15%	
based on	based on	based on
characteristic load	lowest ultimate load	mean ultimate load
N = 30 tests	N = 10 tests	N = 10 tests
$F_{rec} = \frac{F_{u,m} - 2s}{v} = F_{u,m} \frac{1 - 2COV}{v}$	$F_{rec} = \frac{minF_u}{v}$	$F_{rec} = \frac{F_{u,m}}{v}$

with a safety factor of v = 3.5

with a safety factor of $\mathbf{v} = \mathbf{5}$

where:

F_{rec} = allowable (recommended) load


COV = $s/F_{u,m}$ = coefficient of variation in a test series

 $s \hspace{0.5cm} = standard \ deviation \ in \ a \ test \ series \\ F_{u,m} \hspace{0.5cm} = average \ ultimate \ load \ in \ test \ series$

11. Tips for users ("Trouble Shooting")

DX fastenings on concrete

^{*)} Rule of thumb: The higher the compressive strength of concrete, the shorter the fastener **Proper length (mm):** L_s = 22 + t₁ (compare, "Fastening Technology Manual" Part Product section)

DX fastenings on concrete

Fault Cause Possible remedial measures ■ Hard and/or large aggre-■ Use shorter nail Nail is bending gate in concrete ■ Use DX-Kwik (predrill) ■ Rebar close to surface of ■ Use co-acting principle/fastener guide concrete ■ Hard surface (steel) ■ Use stepped shank nail X-U 15 ■ Change cartridge ■ High strength concrete ■ Stud application: Base material is spalling ■ Hard and/or large aggre-Use spall stop X-460-F8SS / - F10SS gate in concrete ■ Old concrete ■ Nail application: Use shorter nail Use DX-Kwik (predrill) Use X-U 15 (for highstrength precast concrete) ■ Too much driving power ■ Reduce power setting Damaged nail head ■ Use lighter cartridge ■ Wrong piston used Check nail-piston-combination ■ Change piston ■ Damaged piston)

Wrong pistons can cause all the above faults: match pistons to nails!

Fastener	Piston	Piston head
X-U, X-C	Use piston X-460-P8	

DX fastenings on steel

Fault Cause Possible remedial measures ■ Try higher power setting or ■ Too little driving power Nail does not penetrate heavier cartridge surface ■ Application limit exceeded ■ Short nail application: (very hard surface) Try X-U 15 Long nail application: Try X-U ■ Unsuitable system ■ Use co-acting principle/fastener guide Switch to heavy system like DX 76 PTR ■ Excess driving energy in ■ Try different power setting Nail does not hold in base thin steel base material or different cartridge material (3 to mm steel) ■ Try X-ENP2K or X-EDNK22 THQ 12 for fastening sheet metal ■ Too little driving power ■ Try higher power setting or Nail is breaking heavier cartridge ■ Application limit exceeded ■ Use shorter nail (very hard surface) ■ Use X-ENP19 ■ Use stronger nail (X-...-H) ■ Use stepped shank nail: X-U 15

8/2011 4.77

DX fastenings on steel

Fault	Cause	Possible remedial measures
Nail head penetrates through material fastened (metal sheet)	■ Too much driving power	 ■ Reduce power setting ■ Use lighter cartridge ■ Use nail with Top Hat ■ Use nail with washer e.g. X-US12
Damaged nail head	■ Too much driving power	■ Reduce power setting■ Use lighter cartridge
	■ Wrong piston used	■ Check nail-piston-combination
	■ Worn-out piston	■ Change piston

Wrong pistons can cause all the above faults: match pistons to nails!

Fastener	Piston	Piston head
X-U	Use piston X-460-P8	

12. Summary of approvals and listings of DF fasteners and DF fastening systems

Approval	Techno- logy	Seg- ment	Product	Country	Application
ABS 01-HS156800A/2-PDA	DX	PS	X-EDNI, EDS, X-DNI, DS, X-ALH, ENPH2, ENP2K, X-ENP-19, X-EDN, X-EDNK, X-EM, X-EW, X-EF	Int.	Fastenings to steel
ABS 01-HS156800B/1-PDA	DX	PS	X-CR, X-CRM, X-CRW, X-FCM-R, X-FCP-R	Int.	Fastenings to steel
ABS 03-HS 369456/1-PDA	DX	PS	X-BT	Int.	Fastenings to steel, off-shore
ABS 03-HS 369884/1-PDA	DX	PS	X-BT	Int.	Fastenings to steel, shipbuilding
BUTgb ATG 03/1824	DX	SM	NPH2, ENP2, ENPH2, ENKK, EDNK, ENP2K	В	Metal deck
COLA RR 25296	DX	SM	X-ENP, X-EDN19, X-EDNK22	USA	Metal deck
COLA RR 25646	DX	BC	X-EDNI, EW6, EDS, EW10, X-DNI, DS, ESD, X-C, X-CR, X-ALH, X-DAK, W6, W10	USA	Fastenings to steel and concrete
COLA RR 25651	DX	IF	CC27ZF, CC27ALH, CC27ALH-Kwik	USA	Ceiling hanger
COLA RR 25662	DX	IF	X-GN, X-EGN, X-DAK, X-DW, X-ZF, X-S	USA	Dry-wall
COLA RR 25675	DX	BC	X-U, X-U15	USA	Fastenings to steel and concrete
COLA RR 25678	SF	SM	Kwik Pro Self-drill	USA	Steel connections
COLA RR 25684	DX	SM	X-EW6H, X-EM8H, X-EW10H, X-CRM8, X-BT	USA	Fastenings to steel
COLA RR 25708	DX	BC	X-DNI72, X-ZF72, X-CF72, X-CP72, X-CR-L72	USA	Sill plate
COLA RR 25826	DX	ME	X-HS U19/27/32	USA	Ceiling hanger
COLA RR 25095	DX	SM	Kwik-Flex Screws	USA	CFS-Connectors
CSTB AT 1+3/03-801	DX	ME	X-EKB, X-ECH, X-EFC, X-HS, X-JH	F	Electrical fastenings
CSTB Pass0087	SF	SM	S-IT 01C4.8xL + S-IW4.9 AZ80x40	F	MEFAWAME
CSTB Pass0088	SF	SM	S-IT 01C4.8xL + S-IW4.9 AZ40x40	F	MEFAWAME
CSTB Pass0089	SF	SM	S-IS 01C4.8xL + S-IW5.6 AZ80x40	F	MEFAWAME
CSTB Pass0090	SF	SM	S-IS 01C4.8xL + S-IW5.6 AZ64x64	F	MEFAWAME
CSTB Pass0091	SF	SM	S-IS 01C4.8xL + S-IW5.6 AZ40	F	MEFAWAME
CSTB Pass0174	SF	SM	S-IT 01C6.3xL + S-IW6.4 AZ40	F	MEFAWAME
CSTB Pass0175	SF	SM	S-IT 01C6.3xL + S-IW6.4 AZ40x40	F	MEFAWAME
CSTB Pass0176	SF	SM	S-IT 01C6.3xL + S-IW6.4 AZ64x64	F	MEFAWAME
CSTB Pass0177	SF	SM	S-IT 01C6.3xL + S-IW6.4 AZ80x40	F	MEFAWAME
DIBt Z-14.1-4	SF	SM	S-MD, S-MP, S-MS01Z	D	Metal deck
DIBt Z-14.1-538	SF	SM	S-MD31/33/35PS	D	Steel connections
DIBt Z-14.4-407	SF	SM	S-CD, S-CDW, S-MP54S	D	Sandwich Panel
DIBt Z-14.4-517	DX	BC	X-U	D	Fastening to steel
DIBt Z-21.7-1512	DX	SM	X-CR M8, X-CR48 (DX-Kwik)	D	Facade
DIBt Z-21.7-670	DX	IF	M8H, X-CR M8, X-DKH48, X-CR48 (DX-Kwik)	D	Ceiling Hanger
DIBt Z-26.4-46	DX	SM	X-HVB	D	Shear Connection
DIBt Z-14.4-456	DX	SM	X-CR14	D	Glas facade

8/2011 4.79

DNV	DX	PS	X-BT, X-FCM-R (M)	Int.	Fastening to steel, Grating
ETA-03/0004	DX	BC	XI-FV	EEA	ETICS
ETA-03/0005	DX	BC	SX-FV	EEA	ETICS
ETA-04/0101	DX	SM	X-ENP-19	EEA	Metal deck
FM	DX	ME	W10, EW10	USA	Sprinkler
FM	SF	SM	S-MD 10, S-MD 12	USA	Sidelap screws
FM 0W8A6.AM	DX	SM	X-EDN-19, X-EDNK-22	USA	Metal deck
FM 2Y6A7.AM	DX	SM	X-EDN-19, X-EDNK-22	USA	Metal deck
FM 3021719	DX	SM	X-ENP-19	USA	Metal deck
FM	SF	SM	Kwik-Pro Screws	USA	Roofing
FM 3026695	DX	ME	X-EW6H, X-EW10H	USA	Sprinkler
FM 3029102	DX	SM	X-ENP-19, X-EDN-19, X-EDNK22, S-MD10, S-MD12	USA	Form deck – LWC
FM 3031144	SF	SM	S-MS	USA	Steel connections
FM 3031301	DX	ME	X-HS W6/10 U19	USA	Sprinkler
FM 3036326	DX/SF	SM	X-ENP-19, X-EDN-19, X-EDNK22, S-SLC-01, S-SLC-2, S-MD10	USA	Metal deck
Germanischer Lloyd	DX	PS	X-BT	Int.	Fastenings to steel
IBMB 8998/2008	DX	IF	X-GN, X-GHP, X-DW	D	Fire rating
IBMB 3041/8171	DX	IF	DX-Kwik, X-CR, X-DKH, X-M6H, X-M8H	D	Fire rating
IBMB P-1433/1043-MPA BS	DX	ME	DX-Kwik X-HS	D	Ceiling hanger
ICC-ES ER-2078P	DX	SM	X-EDN-19, X-EDNK-22, Co-listing in Verco ER	USA	Metal Deck
ICC-ES ESR-1663	DX	BC	X-EDNI, EW6, EDS, DS, X-CR, X-ALH, X-C, X-DAK, W6, W10	USA	Fastenings to steel and concrete
ICC-ES ESR-1730	SF	SM	Global Fastener – Hilti Co-listing	USA	CFS-Connections
ICC-ES ESR-2184	DX	IF	CC27ZF, CC27ALH, CC27ALH-Kwik	USA	Ceiling hanger
ICC-ES ER-4780	SF	SM	Kwik-Flex screws (Elco)	USA	General purpose
ICC-ES ESR-1116	DX	SM	X-EDN-19, X-EDNK-22, X-ENP19, Co-listing in Wheeling ESR	USA	Metal Deck
ICC-ES ESR-1169	DX	SM	X-ENP19, Co-listing in CSI ESR	USA	Metal Deck
ICC-ES ESR-1414	DX	SM	X-EDN-19, X-EDNK22, ENPH2, Co-listing in ASC ESR	USA	Metal Deck
ICC-ES ESR-1752	DX	IF	X-GN, X-EGN, X-S, X-ZF, X-DW	USA	Dry-wall
ICC-ES ESR-2196	SF	SM	S-MD Selfdrilling screws	USA	CFS connections
ICC-ES ESR-2197	DX	SM	X-ENP-19, X-EDN-19, X-EDNK22	USA	Metal deck
ICC-ES ESR-2199	DX	SM	X-EDN-19, X-EDNK22 + Verco HSB, Sheartranz	USA	Metal deck
ICC-ES ESR-2269	DX	BC	X-U, X-U15	USA	Fastenings to steel and concrete
ICC-ES ESR-2347	DX	BC	X-EW6H, X-EM8H, X-EW10H; X-CRM, X-BT	USA	Stud connections to steel
ICC-ES ESR-2379	DX	BC	X-DNI 72, X-ZF 72, X-CF 72, X-CP 72, X-CR-L 72	USA	Sill plate
ICC-ES ESR-2795	DX	ME	X-HS U19/27/32	USA	Ceiling hanger
ICC-ES ESR-2892	DX	IF	X-CW	USA	Ceiling hanger
LR 03/00070	DX	PS	X-BT	Int.	Fastenings to steel
LR 97/00077	DX	PS	X-U, EDS, DS, X-ENP-19, X-ENP2K, X-EDN, X-EDNK, X-EM, X-EW, X-EF, X-CC, X-FCM, X-FCP	Int.	Fastenings to steel

LR 97/00078	DX	PS	X-CR, X-CRM, X-FCM-R, X-FCP-R, X-HS-R	Int.	Fastenings to steel
MLIT 2005	DX	SM	X-ENP-19	Jap	Composite deck
Socotec PX 0091/5	DX	SM	X-HVB	F	Shear connection
Socotec PX 0091/6	DX	SM	X-HVB	F	Shear Connection - Rehabilitation
Socotec WX 1509	DX	IF	DNH37, X-CC DKH48, X-HS DKH48, M8H	F	Fastenings to concrete
Socotec WX 1530	DX	BC	X-IE	F	Insulation
Socotec TX 8710	DX	SM	NPH2	F	Metal deck
TZUS 070-024042	DX	SM	X-HVB	Cz	Shear connection
U.S. Navy 61/09-220	DX	PS	X-BT for LPD17	USA	Fastening to steel
UL E201485	DX	ME	X-ECH/FR-L/-M/-S DNI-H42 PH or X-U, X-EKB, X-ECT	USA/CAN	Electrical fastenings
UL E217969	DX	ME	X-HS W6/10 U19/22/27 or DNI, AL, EDNI	USA/CAN	Mechanical fastenings
UL EX 2258	DX	ME	W10, EW10, X-EW6H, X-EW10H	USA/CAN	Sprinkler
UL R 13203	DX	SM	X-EDN-19, X-EDNK-22, X-ENP-19	USA	Metal deck
UL E 257069	DX	PS	X-BT-M10, X-BT-W10	USA/CAN	Grounding

Guide to finding the approvals

 $Inside\ Hilti > Departments > Bas > Business\ Area\ Fastening\ Protection\ Systems > BU\ Direct\ Fastening > Product\ Documentation > Approvals$

http://intranet.hilti.com/irj/portal?NavigationTarget = navurl://c6aa6b69a62ae5e0121a7656717660c7

http://www.eagle.org/typeapproval/contents.html

http://www.icc-es.org/Evaluation_Reports/index.shtml

http://www.cdlive.lr.org/information/default.asp?preOpen=Approvals

http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm

8/2011 4.81

Product index	5.1-5.3
Alphabetical list of DX/GX fasteners 5.2	
Alphabetical list of steel and metal screws 5.3	

8/2011 5.1

Alphabetical list of DX/GX fasteners

A-Z Fastener	Page	A-Z Fastener	Page
DNH	2.101	X-ET	2.213
DS	2.73	X-EW 6H	2.113
EDS	2.79	X-EW 10H	2.113
M10	2.107	X-F7	2.107
NPH	2.35	X-FB	2.201
SDK2	2.23	X-FCM	2.133
W10	2.107	X-FCP	2.157
X-BT	2.119	X-FS	2.171
X-C	2.57	X-GR	2.141
X-CC	2.175	X-GN	2.67
X-CC MX	2.181	X-GHP	2.67
X-CR	2.89	X-GR-RU	2.147
X-CR for steel	2.85	X-HS	2.175
X-CRM	2.125	X-HS MX	2.181
X-CT	2.97	X-HS-W	2.187
X-DKH	2.101	X-HVB	2.39
X-DFB	2.201	X-IE	2.163
X-ECH	2.193	X-MGR	2.153
X-ECT MX	2.207	X-M6	2.107
X-EDNK22 THQ12	2.31	X-M 6H	2.101
X-EDN19 THQ12	2.31	X-M8	2.107
X-EF 7H	2.213	X-M 8H	2.101
X-EKB	2.193	X-S	2.63
X-EKS MX	2.207	X-SW	2.167
X-EMTSC	2.207	X-U	2.47
X-EM 6H	2.113	X-W6	2.107
X-EM 8H	2.113		
X-EM 10H	2.113		
X-EMTC	2.201		
X-EGN	2.67		
X-EKB	2.193		
X-ENP	2.15		
X-ENP2K	2.25		

Alphabetical list of steel and metal screws

A-Z Screws	Page
C CDGQC E E.J	
S-CD63C 5.5×L	3.144
S-CD65C 5.5×L	3.147
S-CD63S 5.5×L	0.400
S-CD73S 5.5×L	3.132
S-CD65S 5.5×L	0.100
S-CD75S 5.5×L	3.136
S-CDW61C 6.5×L	3.150
S-CDW61S 6.5×L	0.140
S-CDW71S 6.5×L	3.140
S-MD51LS 5.5×L	
S-MD61LS 5.5×L	
S-MD71LS 5.5×L	3.69
S-MD51LZ 4.8×L	3.18
S-MD31PS 4.8×19	3.92
S-MD31PS 5.5	3.97
S-MD33PS	3.103
S-MD35PS	3.109
S-MD01S	
S-MD03S	
S-MD05S	3.84
S-MD43S 5.5×L	3.78
S-MD51S 4.8×L	
S-MD51S 5.5×L	
S-MD61S 4.8×L	3.64
S-MD53S	
S-MD63S	
S-MD73S 5.5×L + 6.3×L	3.72
S-MD55S	
S-MD65S	
S-MD75S 5.5×L	3.81
S-MD01Z	
S-MD01Y	3.36
S-MD03Z	
S-MD23Z	
S-MD2310Y	3.46

A-Z Screws	Page
S-MD05Z	
S-MD25Z	3.59
S-MD21Z	3.56
S-MD51Z 4.8×L	3.12
S-MD51Z 6.3×L	3.15
S-MD53Z 4.8×L	3.21
S-MD53Z 5.5×L	3.24
S-MD53Z 6.3×L	3.27
S-MD55Z 5.5×L	
S-MD65Z 5.5×L	3.30
S-MP54S 6.3×L	
S-MP64S 6.3×L	
S-MP74S 6.3×L	3.126
S-MP53S 6.5×L	
S-MP63S 6.5×L	
S-MP73S 6.5×L	3.122
S-MP52Z 6.3×L	3.117
S-MP53Z 6.5×L	3.114
S-MS01Z	3.33
S-AW	3.153

8/2011 5.3

8/2011 5.5

